深度学习--最新论文
最新的论文阅读总结,这些论文都只是略读。
会不断更新
whitenightwu
这个作者很懒,什么都没留下…
展开
-
《Neural Machine Translation in Linear Time》
《Neural Machine Translation in Linear Time》 新型的source–target网络结构ByteNet,并通过两个扩张卷积神经网络(Dilated Convolution)堆叠实现,完成了机器翻译任务,并且将时间复杂度控制在线性范围。 dilated-conv,即使去掉池化层也能保证网络的感受野,从而确保图像语义分割的精度。...原创 2018-11-28 09:49:10 · 497 阅读 · 0 评论 -
Semantic Scene Completion from a Single Depth Image
Semantic Scene Completion from a Single Depth Image Princeton University(普林斯顿大学)1.论文简介 1.1摘要 论文解决的问题是semantic scene completion(语义场景补全),之前的方法是将分为两个问题:1.场景补全(scene completion),也就是预测体积占用,一般是用体素 (vo原创 2017-11-23 20:56:18 · 2864 阅读 · 0 评论 -
最新论文阅读(2)
Training RNNs as Fast as CNNs- 2017年9月- Simple Recurrent Unit(SRU); NLP与语音识别任务; 加速- ASAPP inc;MIT 通过有意简化状态计算并展现更多的并行性而提出了一个替代性的 RNN 实现,这一循环单元的运算和卷积层一样快,并且比 cuDNN 优化的 LSTM 快 5-10x。 该实现在诸如分类、...原创 2018-06-01 17:07:03 · 291 阅读 · 0 评论 -
最新论文阅读(36)
NoScope: Optimizing Neural Network Queries over Video at Scale- 2017年3月- 视频中的目标检测;名为NoScope的检索引擎- 非常的快。 思想:由于视频目标是连续的,里面包含了大量时间局部性(temporal locality,即在不同的时间是相似的)和空间局部性(spatial locali...原创 2018-06-10 21:11:00 · 327 阅读 · 0 评论 -
最新论文阅读(35)--Single Image Super-Resolution via Cascaded Multi-Scale Cross Network
Single Image Super-Resolution via Cascaded Multi-Scale Cross Network- 2018年2月- 单幅图像的超分辨率;级联+残差网络- IEEE成员(中国人) 提出了一个级联多尺度交叉网络(CMSC),其中一系列子网络级联以便以粗到细的方式推断高分辨率特征。在每个级联子网中,我们将多个多尺度交叉(MSC)模块堆叠起来,同时...原创 2018-06-10 21:08:03 · 1064 阅读 · 0 评论 -
最新论文阅读(34)--End-to-end detection-segmentation network with ROI convolution
End-to-end detection-segmentation network with ROI convolution- 2018年1月- ROI卷积- 阿尔伯塔大学【加拿大】 主要是ROI convolution的介绍。原创 2018-06-10 21:05:37 · 517 阅读 · 1 评论 -
最新论文阅读(33)--Data Distillation: Towards Omni-Supervised Learning
Data Distillation: Towards Omni-Supervised Learning- 2017年12月- 全方位监督(Omni-Supervised);数据精馏(data distillation)- Ilija Radosavovic, Piotr Dollar, Ross Girshick, Georgia Gkioxari, Kaiming He,Facebook...原创 2018-06-10 21:03:54 · 1724 阅读 · 0 评论 -
PVANet的总结和思考
本文主要是针对《PVANet: Lightweight Deep Neural Networks for Real-time Object Detection》 的总结和思考。阅读时如有错误,你来打我。原创 2017-03-30 20:07:44 · 2454 阅读 · 0 评论 -
PVANet--实时的物体发现(检测)
一、论文总结二、使用说明三、部分结果原创 2017-03-31 20:28:43 · 2424 阅读 · 3 评论 -
深度学习的论文查找
覆盖范围 1、basic_network全覆盖 根据实际应用需求,按照3大方向覆盖全部的basic network 2、leaderboard 以PASCAL VOC榜单为蓝本,按照3大方向覆盖2015年之后的所有project。其中会有大量重复的网络结构,针对此情况可以忽略。 3、leader company Google Baidu Facebo...原创 2017-09-05 21:03:29 · 1975 阅读 · 0 评论 -
Face++团队发表的DL论文整理
Face++团队作者:何宜晖 链接:https://www.zhihu.com/question/26558251/answer/113530447 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。RecognitionChannel Pruning for Accelerating Very Deep Neural Networks[1707.06168]原创 2017-11-23 21:02:10 · 598 阅读 · 0 评论 -
最新论文阅读(3)
Gated Feedback Refinement Network for Dense Image Labeling- 2017CVPR - G-FRNet - 曼尼托巴大学【美】 GFRNet进行粗略预测,然后在细化阶段高效地整合局部和全球上下文信息,逐步细化细节。我们引入了控制前进信息的门单元,以过滤掉歧义。 AutoEncoder By Forest- ...原创 2018-06-06 21:08:41 · 776 阅读 · 0 评论 -
最新论文阅读(4)--Swish: a Self-Gated Activation Function
Swish: a Self-Gated Activation Function- 2017年10月 - Swish- google 一种新的激活函数,公式为y=x*sigmoid(x);在Inception、resnet、mobilenet中会比使用relu提高1%左右的性能;Swish是无上界有下界的函数。 对于新的激活函数,在ImageNet上top-1 acc...原创 2018-06-06 21:28:28 · 1854 阅读 · 0 评论 -
最新论文阅读(5)
Hierarchical Multimodal LSTM for Dense Visual-Semantic Embedding- 2017年10月 - 层次化的 LSTM 模型(树形结构)- 阿里iDST、西安电子科大、西安交大 基于层次化多模态LSTM的视觉语义联合嵌入;CV和NLP两个领域联合起来,解决「视觉-语义联合嵌入 (Visual-Semantic Embeddin...原创 2018-06-06 21:35:35 · 533 阅读 · 0 评论 -
最新论文阅读(6)--Jointly Attentive Spatial-Temporal Pooling Networks for Video-based Person
Jointly Attentive Spatial-Temporal Pooling Networks for Video-based Person- 2017年9月 - 用于行人重检验的,ASTPN- 华中科大;IBM;西北大学【美】 joint Spatial and Temporal Attention Pooling Network。 spatial poolin...原创 2018-06-06 21:47:42 · 1945 阅读 · 0 评论 -
最新论文阅读(7)--Segmentation-Aware Convolutional Networks Using Local Attention Masks
Segmentation-Aware Convolutional Networks Using Local Attention Masks- 2017年8月- 用于语义分割;提出Im2dist- 卡内基梅隆;瑞尔森大学【加】;Facebook DNN中,网络越深,神经元对图像进行“审查”的部分就越大,这可能会导致局部性(localized)变差以及模糊(神经元需要对图像中非常大的区...原创 2018-06-06 22:03:27 · 1176 阅读 · 0 评论 -
最新论文阅读(8)--DiracNets: Training Very Deep Neural Networks Without Skip-Connections
DiracNets: Training Very Deep Neural Networks Without Skip-Connections- 2017年6月 - 提出NCReLU和Dirac参数化,它适用于广泛的网络架构- ParisTech(巴黎高科,一个小学校) 提出新的权重参数化(weight parameterization)方法,即Dirac参数化,它适用于广泛的网...原创 2018-06-07 20:11:51 · 863 阅读 · 0 评论 -
最新论文阅读(9)--Learning to Segment Every Thing
Learning to Segment Every Thing- 2017年11月 - 迁移学习,半监督;实例分割(instance-segmentation);Mask^X R-CNN- 伯克利;FAIR;Kaiming He; Ross Girshick 是「Mask RCNN后续工作」,结合weakly supervision和weight transferring等技术,...原创 2018-06-07 20:19:55 · 748 阅读 · 0 评论 -
最新论文阅读(10)
Detecting Faces Using Region-based Fully Convolutional Networks- 2017年9月- Face R-FCN;人脸检测- 腾讯AI Lab Face R-FCN主要是基于R-FCN(基于区域的全卷积网络)框架来解决人脸检测问题。在R-FCN框架的基础上,他们采用ResNet(残差网络)作为基础网络,结合了多尺度训练和测试、...原创 2018-06-07 20:28:15 · 383 阅读 · 0 评论