LeetCode 1314. 矩阵区域和 【二维前缀和】

该篇博客介绍了如何使用二维前缀和的方法解决一个编程题目,该题目要求计算给定矩阵中每个元素周围k个街区的元素之和。通过构建前缀和矩阵,可以高效地求解目标矩阵。示例展示了当k分别为1和2时的输出结果,题目来源于LeetCode平台。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

给你一个 m x n 的矩阵 mat 和一个整数 k ,请你返回一个矩阵 answer ,其中每个 answer[i][j] 是所有满足下述条件的元素 mat[r][c] 的和:

i - k <= r <= i + k,
j - k <= c <= j + k 且
(r, c) 在矩阵内。

示例 1:

输入:mat = [[1,2,3],[4,5,6],[7,8,9]], k = 1
输出:[[12,21,16],[27,45,33],[24,39,28]]
示例 2:

输入:mat = [[1,2,3],[4,5,6],[7,8,9]], k = 2
输出:[[45,45,45],[45,45,45],[45,45,45]]

提示:

m == mat.length
n == mat[i].length
1 <= m, n, k <= 100
1 <= mat[i][j] <= 100

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/matrix-block-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

题解

二维前缀和

class Solution {
    public int[][] matrixBlockSum(int[][] mat, int k) { 
        int n=mat.length,m=mat[0].length;
        int[][] dp=new int[n+1][m+1];
        for(int i=1;i<=n;i++){
            for(int j=1;j<=m;j++){
                dp[i][j]=dp[i-1][j]+dp[i][j-1]+mat[i-1][j-1]-dp[i-1][j-1];
            }
        }
        for(int i=1;i<=n;i++){
            for(int j=1;j<=m;j++){
                int x1=i-k,y1=j-k,x2=i+k,y2=j+k;
                if(x1<1) x1=1;
                if(y1<1) y1=1;
                if(x2>n) x2=n;
                if(y2>m) y2=m;
                mat[i-1][j-1]=dp[x2][y2]+dp[x1-1][y1-1]-dp[x1-1][y2]-dp[x2][y1-1];
            }
        }
        return mat;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wydxry

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值