1.基础概念
1.1 定义
Hive是一个基于Hadoop的数据仓库基础设施工具,它可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能(HQL)。Hive可以将SQL转换为MapReduce的任务进行运算,底层由HDFS来提供数据的存储。
1.2 组件
HiveQL:Hive Query Language(HiveQL)是Hive的查询语言,它类似于SQL。HiveQL允许开发人员使用SQL语法来查询和分析数据,包括SELECT、JOIN、GROUP BY、ORDER BY等操作。
元数据存储:Hive使用元数据来描述和存储数据的结构和属性。元数据存储可以使用不同的后端,如Derby、MySQL等。元数据包括表的定义、分区信息、列的数据类型等。
执行引擎:Hive支持多种执行引擎,包括MapReduce、Tez和Spark。这些执行引擎用于执行HiveQL查询,并将其转化为底层任务进行数据处理和计算。
数据存储:Hive使用Hadoop分布式文件系统(HDFS)作为底层数据存储。它支持将数据以表的形式组织起来,可以在表上定义分区、分桶等数据组织方式。
用户定义函数(UDF):Hive允许开发人员编写自定义函数来扩展HiveQL的功能。这些用户定义函数可以使用Java、Python等编程语言编写,并在Hive查询中使用。
数据导入和导出:Hive提供了用于将数据导入到Hive表中和从Hive表中导出数据的机制。可以使用Hive自带的命令或工具,或者通过外部工具和技术,如Sqoop和Flume,进行数据导入和导出操作。
1.3 元数据
Hive中的元数据是指描述和管理数据表的数据,包括表的结构、分区方式、存储路径、表的基本信息等。元数据描述了数据的存储、表结构、分区信息等,使得Hive可以更好地管理和访问数据。
在Hive中,元数据通常存储在关系型数据库中,例如MySQL、PostgreSQL等,由Hive Metastore进行管理。元数据的存储结构可以由用户自定义,也可以使用默认的存储结构。
除了描述表的基本信息,元数据还记录了表的分区信息、数据存储路径等,这些信息可以帮助Hive更好地执行查询和优化性能。在Hive中,元数据是进行SQL查询优化和提高查询性能的重要依据。
1.4 内部表和外部表
内部表(Managed Table):Hive的内部表是指由Hive管理的表,这些表的数据存储在Hive的数据仓库中,删除内部表时,Hive不仅会删除表的元数据,还会删除表的数据。
外部表(External Table):Hive的外部表是指那些存储在Hive数据仓库之外的数据表,例如存储在HDFS或其他文件系统中的表。对于外部表,Hive只负责提供元数据,而不管理实际的数据。当删除外部表时,Hive只会删除表的元数据,而不会删除表数据。需要注意的是,外部表中的数据无法被Hive直接管理,因此不能在Hive中对外部表执行如DML操作或创建索引等操作。
2. Hive与关系型数据库的对比
Hive | RDBMS | |
---|---|---|
查询语言 | HQL | SQL |
数据存储 | HDFS分布式文件系统 | 原始设备或本地文件 |
执行引擎 | MapReduce | Excutor |
执行延迟 | 高 | 低 |
数据规模 | 大规模 | 小规模 |
索引 | 没有索引 | 复杂索引 |
总的来说,Hive更适合大规模分布式数据处理和分析场景,而传统关系型数据库则更适合处理小型、结构化的事务性应用程序。
友情提示:本小节借鉴的是参考文献1
3. Hive 数据存储
Hive的数据存储基于Hadoop文件系统(HDFS),表中的数据在HDFS中都有相应的目录用来存储数据,每个表在HDFS中都有自己的目录,表的数据都存放在这个目录中。例如,如果有一个表temp_hive,那么在HDFS中会创建/user/hive/warehouse/temp_hive目录(这里假定hive.metastore.warehouse.dir配置为/user/hive/warehouse),temp_hive表所有的数据都存放在这个目录中。
Hive的存储结构主要包括数据库、文件、表、视图等,可以直接接入文本文件(.txt)中,在创建表的时候指定Hive数据的列分隔符和行分隔符。Hive的表和关系型数据库中的表在概念上很类似,每个表在HDFS中都有相应的目录用来存储表的数据。