lambda表达式是stream的基础,初学者建议先学习lambda表达式: JDK8-lambda表达式。 及其JDK8-Optional类
文章目录
1 Stream流特点
- 1.stream不存储数据
- 2.stream不改变源数据
- 3.stream的延迟执行特性
通常我们在数组或集合的基础上创建stream,stream不会专门存储数据,对stream的操作也不会影响到创建它的数组和集合,对于stream的聚合、消费或收集操作只能进行一次,再次操作会报错,如下代码:
public static void main(String[] args) {
Stream<String> stream = Stream.generate(()->"user").limit(5);
stream.forEach(System.out::println);
}
2 创建Stream
1)通过数组创建 – Arrays.stream()或者Stream.of()
//1.通过Arrays.stream
//1.1基本类型
int[] arr = new int[]{1,2,34,5};
IntStream intStream = Arrays.stream(arr);
//1.2引用类型
Student[] studentArr = new Student[]{new Student("s1",29),new Student("s2",27)};
Stream<Student> studentStream = Arrays.stream(studentArr);
//2.通过Stream.of
Stream<Integer> stream1 = Stream.of(1,2,34,5,65);
//注意生成的是int[]的流
Stream<int[]> stream2 = Stream.of(arr,arr);
stream2.forEach(System.out::println);
2)通过集合创建流 – list.stream()或者list.parallelStream()
List<String> strs = Arrays.asList("11212","dfd","2323","dfhgf");
Stream<String> stream = strs.stream(); //创建普通流
Stream<String> stream1 = strs.parallelStream(); //创建并行流
3)创建空的流 – Stream.empty(
Stream<Integer> stream = Stream.empty(); //创建一个空的stream
4)创建无限流 – tream.generate(lambda表达式生成数据)
//创建无限流,通过limit提取指定大小
Stream.generate(()->"number"+new Random().nextInt()).limit(100).forEach(System.out::println);
Stream.generate(()->new Student("name",10)).limit(20).forEach(System.out::println);
5)创建规律的无限流 Stream.iterate(lamvda表达式生成规律数据)
// 产生规律的数据
Stream.iterate(0,x->x+1).limit(10).forEach(System.out::println);
Stream.iterate(0, UnaryOperator.identity()).limit(10).forEach(System.out::println);
3 对流的操作
1)最常使用
1 map – 转换流,将一种类型的流转换为另外一种流
// map把一种类型的流转换为另外一种类型的流,将String数组中字母转换为大写
String[] arr = new String[]{"yes", "YES", "no", "NO"};
Arrays.stream(arr).map(x -> x.toLowerCase()).forEach(System.out::println);
2 filter – 过滤流,过滤流中的元素
Integer[] arr = new Integer[]{1,2,3,4,5,6,7,8,9,10};
Arrays.stream(arr).filter(x->x>3&&x<8).forEach(System.out::println);
3 flapMap – 拆解流,将流中每一个元素拆解成一个流
String[] arr1 = {"a", "b", "c", "d"};...
List<String> collect = Stream.of(arr1, arr2).flatMap(Arrays::stream).collect(Collectors.toList());
Stream.of(arr1, arr2).flatMap(x -> Arrays.stream(x)).forEach(System.out::println);
4 sorted – 对流进行排序
String[] arr1 = {"abc","a","bc","abcd"};
Arrays.stream(arr1).sorted(Comparator.comparing(String::length)).forEach(System.out::println);
/**
* 倒序。reversed(),java8泛型推导的问题,所以如果comparing里面是非方法引用的lambda表达式就没办法直接使用reversed()
* Comparator.reverseOrder():也是用于翻转顺序,用于比较对象(Stream里面的类型必须是可比较的)
* Comparator. naturalOrder():返回一个自然排序比较器,用于比较对象(Stream里面的类型必须是可比较的)
*/
Arrays.stream(arr1).sorted(Comparator.comparing(String::length).reversed()).forEach(System.out::println);
Arrays.stream(arr1).sorted(Comparator.reverseOrder()).forEach(System.out::println);
Arrays.stream(arr1).sorted(Comparator.naturalOrder()).forEach(System.out::println);
// thenComparing,先按照首字母排序,之后按照String的长度排序
public void testSorted3_(){
Arrays.stream(arr1).sorted(Comparator.comparing(this::com1).thenComparing(String::length)).forEach(System.out::println);
}
public char com1(String x){
return x.charAt(0);
}
2)提取流和组合流
public void init(){
arr1 = new String[]{"a","b","c","d"};....
}
1 limit – 限制从流中获得前n个数据
Stream.iterate(1,x->x+2).limit(10).forEach(System.out::println);
2 skip – 跳过前n个数据
Stream.iterate(1,x->x+2).skip(1).limit(5).forEach(System.out::println);
3 concat – 合并流
// 可以把两个stream合并成一个stream(合并的stream类型必须相同),只能两两合并
Stream<String> stream1 = Stream.of(arr1);
Stream<String> stream2 = Stream.of(arr2);
Stream.concat(stream1,stream2).distinct().forEach(System.out::println);
3)聚合操作
@Before
public void init(){
arr = new String[]{"b","ab","abc","abcd","abcde"};
}
1 max、min – 最大最小值
Stream.of(arr).max(Comparator.comparing(String::length)).ifPresent(System.out::println);
Stream.of(arr).min(Comparator.comparing(String::length)).ifPresent(System.out::println);
2 count – 计算数量
long count = Stream.of(arr).count();
System.out.println(count);
3 findFirst – 查找第一个
String str = Stream.of(arr).parallel().filter(x->x.length()>3).findFirst().orElse("noghing");
System.out.println(str);
4 findAny – 找到所有匹配的元素
// findAny,找到所有匹配的元素,对并行流十分有效,只要在任何片段发现了第一个匹配元素就会结束整个运算
Optional<String> optional = Stream.of(arr).parallel().filter(x->x.length()>3).findAny();
optional.ifPresent(System.out::println);
5 anyMatch – 是否含有匹配元素
Boolean aBoolean = Stream.of(arr).anyMatch(x->x.startsWith("a"));
System.out.println(aBoolean);
4)收集结果
Student[] students;
@Before
public void init(){
students = new Student[100];
for (int i=0;i<30;i++){
Student student = new Student("user",i);
students[i] = student;
}...
}
1 生成list、set、map
// 生成List
List<Student> list = Arrays.stream(students).collect(toList());
list.forEach((x)-> System.out.println(x));
// 生成Set
Set<Student> set = Arrays.stream(students).collect(toSet());
set.forEach((x)-> System.out.println(x));
// 如果包含相同的key,则需要提供第三个参数,否则报错
Map<String,Integer> map = Arrays.stream(students).collect(toMap(Student::getName,Student::getScore,(s,a)->s+a));
map.forEach((x,y)-> System.out.println(x+"->"+y));
2 生成数组
Student[] s = Arrays.stream(students).toArray(Student[]::new);
for (int i=0;i<s.length;i++)
System.out.println(s[i]);
3 指定生成的类型
HashSet<Student> s = Arrays.stream(students).collect(toCollection(HashSet::new));
s.forEach(System.out::println);
4 统计
IntSummaryStatistics summaryStatistics = Arrays.stream(students).collect(Collectors.summarizingInt(Student::getScore));
System.out.println("getAverage->"+summaryStatistics.getAverage());
System.out.println("getMax->"+summaryStatistics.getMax());
System.out.println("getMin->"+summaryStatistics.getMin());
System.out.println("getCount->"+summaryStatistics.getCount());
System.out.println("getSum->"+summaryStatistics.getSum());
5)分组和分片
分组和分片的意义是,将collect的结果集展示位Map<key,val>的形式:
Student[] students;
@Before
public void init(){
students = new Student[100];
for (int i=0;i<30;i++){
Student student = new Student("user1",i);
students[i] = student;
}...
}
1 groupingBy – 分组
Map<String,List<Student>> map = Arrays.stream(students).collect(groupingBy(Student::getName));
map.forEach((x,y)-> System.out.println(x+"->"+y));
2 partitioningBy – 分成两组
// 如果只有两类,使用partitioningBy会比groupingBy更有效率
Map<Boolean,List<Student>> map = Arrays.stream(students).collect(partitioningBy(x->x.getScore()>50));
map.forEach((x,y)-> System.out.println(x+"->"+y));
3 downstream – 指定类型类分组
Map<String,Set<Student>> map = Arrays.stream(students).collect(groupingBy(Student::getName,toSet()));
map.forEach((x,y)-> System.out.println(x+"->"+y));
4 downstream --分组时进行聚合操作
// counting
Map<String,Long> map1 = Arrays.stream(students).collect(groupingBy(Student::getName,counting()));
map1.forEach((x,y)-> System.out.println(x+"->"+y));
// summingInt
Map<String,Integer> map2 = Arrays.stream(students).collect(groupingBy(Student::getName,summingInt(Student::getScore)));
map2.forEach((x,y)-> System.out.println(x+"->"+y));
// maxBy
Map<String,Optional<Student>> map3 = Arrays.stream(students).collect(groupingBy(Student::getName,maxBy(Comparator.comparing(Student::getScore))));
map3.forEach((x,y)-> System.out.println(x+"->"+y));
// mapping
Map<String,Set<Integer>> map4 = Arrays.stream(students).collect(groupingBy(Student::getName,mapping(Student::getScore,toSet())));
map4.forEach((x,y)-> System.out.println(x+"->"+y));
4 原始类型流
在数据量比较大的情况下,将基本数据类型(int,double…)包装成相应对象流的做法是低效的,因此,我们也可以直接将数据初始化为原始类型流,在原始类型流上的操作与对象流类似,我们只需要记住两点
- 1.原始类型流的初始化
- 2.原始类型流与流对象的转换
// 原始类型流的初始化
@Before
public void testStream1(){
doubleStream = DoubleStream.of(0.1,0.2,0.3,0.8);
intStream = IntStream.of(1,3,5,7,9);
IntStream stream1 = IntStream.rangeClosed(0,100);
IntStream stream2 = IntStream.range(0,100);
}
// 包装流与原始类型流的转换
@Test
public void testStream2(){
Stream<Double> stream = doubleStream.boxed();
doubleStream = stream.mapToDouble(Double::new);
}
5 并行流
可以将普通顺序执行的流转变为并行流,只需要调用顺序流的parallel() 方法即可,如Stream.iterate(1, x -> x + 1).limit(10).parallel()。
问答:
1 sorted()、distinct()等对并行流的影响? sorted()、distinct()是元素相关方法,和整体的数据是有关系的,map,filter等方法和已经通过的元素是不相关的,
不需要知道流里面有哪些元素 ,并行执行和sorted会不会产生冲突呢?
结论:1.并行流和排序是不冲突的,2.一个流是否是有序的,对于一些api可能会提高执行效率,对于另一些api可能会降低执行效率
6 stream和parallelStream的基本区别
Stream和parallelStream是Java 8中引入的两种流处理方式。Stream是顺序流,它在单个线程上执行,适用于数据量较小或不需要并行处理的情况。而parallelStream支持并行处理,可以充分利用多核处理器的优势,显著提高处理大量数据的性能。
性能差异
顺序流在单个线程上执行,因此在处理小量数据时通常比并行流更快。然而,当处理大量数据时,并行流可以充分利用多核处理器的优势,从而显著提高性能。需要注意的是,并行流在处理过程中可能会引入额外的开销,如线程创建、同步和合并结果等,因此在数据量较小的情况下,使用并行流可能并不会带来性能提升。
适用场景
顺序流适用于数据量较小或不需要并行处理的情况,例如在处理一些简单的数据转换或过滤操作时,使用顺序流通常更加简单和高效。而并行流则适用于需要处理大量数据,并且这些数据之间没有依赖关系的情况。