Description
Watchmen are in a danger and Doctor Manhattan together with his friend Daniel Dreiberg should warn them as soon as possible. There are n watchmen on a plane, the i-th watchman is located at point (xi, yi).
They need to arrange a plan, but there are some difficulties on their way. As you know, Doctor Manhattan considers the distance between watchmen i and j to be |xi - xj| + |yi - yj|. Daniel, as an ordinary person, calculates the distance using the formula .
The success of the operation relies on the number of pairs (i, j) (1 ≤ i < j ≤ n), such that the distance between watchman i and watchmen j calculated by Doctor Manhattan is equal to the distance between them calculated by Daniel. You were asked to compute the number of such pairs.
Input
The first line of the input contains the single integer n (1 ≤ n ≤ 200 000) — the number of watchmen.
Each of the following n lines contains two integers xi and yi (|xi|, |yi| ≤ 109).
Some positions may coincide.
Output
Print the number of pairs of watchmen such that the distance between them calculated by Doctor Manhattan is equal to the distance calculated by Daniel.
Sample Input
3 1 1 7 5 1 5
2
6 0 0 0 1 0 2 -1 1 0 1 1 1
11
Hint
In the first sample, the distance between watchman 1 and watchman 2 is equal to |1 - 7| + |1 - 5| = 10 for Doctor Manhattan and for Daniel. For pairs (1, 1), (1, 5) and (7, 5), (1, 5) Doctor Manhattan and Daniel will calculate the same distances.
分析:
这题如果采用两重循环超时。
题意就是输出满足xi = xj 或者 yi = yj 的组数。
我们可以这样做:
先算x列有多少重复的,再算y列有多少重复的,因为前面两种可能会有重复,比如说第二个输入样例中的0 1出现了两次,如果不减去这种重复的情况,那么结果必然是不对的。
统计x列重复组数为c1,统计y列重复组数为c2,统计整体重复组数为c3,
那么最终结果 = c1*(c1-1)/2 + c2*(c2-1)/2 - c3*(c3-1)/2。
这里用的是STL的map,比较方便。
统计c3的时候,用的是map< <int, int> , int > 类型。
代码如下:
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <map>
#include <algorithm>
using namespace std;
typedef long long ll;
typedef pair<int, int> p;
map<int, int> ma, mb;
map<p, int> mp;
int main()
{
ll cnt = 0;
int n;
scanf("%d", &n);
int a, b;
for(int i = 0; i < n; i++)
{
scanf("%d%d", &a, &b);
ma[a]++;
mb[b]++;
mp[p(a,b)]++;
}
map<int,int>::iterator pa;
for(pa = ma.begin(); pa != ma.end(); pa++)
{
int tmp = static_cast<int>(pa->second);
cnt += tmp*(ll)(tmp-1)/2;
}
map<int,int>::iterator pb;
for(pb = mb.begin(); pb != mb.end(); pb++)
{
int tmp = static_cast<int>(pb->second);
cnt += tmp*(ll)(tmp-1)/2;
}
map<p,int>::iterator pc;
for(pc = mp.begin(); pc != mp.end(); pc++)
{
int tmp = static_cast<int>(pc->second);
cnt -= tmp*(ll)(tmp-1)/2;
}
printf("%d\n", cnt);
return 0;
}