马上消费面试

一、 jacoco和行覆盖率

1)推动开发下线废弃的代码

2)通过流量录制提高测试脚本的行覆盖率

3)通过定期用例评审完善测试脚本的测试场景

二、复杂链路的测试环境治理经验

1)定期清理异常日志

2)下线废弃的代码

3)测试过程中使用主干和泳道的方式避免频繁部署非提测服务

三、后端数据链路测试

四、兼容测试

针对不同浏览器,操作系统和手机型号进行兼容性测试

五、性能测试

定期进行性能测试,并对测试结果进行调整,对性能问题进行优化

六、专项测试

七、异常测试即可靠性测试

1)故障恢复测试

2)安全性测试

3)

八、预发布环境测试能力建设

环境搭建和配置,测试流程和规范,监控告警和测试数据管理,自动化测试与工具的应用。

预发布环境测试能力建设是一个涉及多个方面的系统性工作,其主要目的是确保软件或应用在上线前能够在与生产环境相似的环境中稳定运行,并减少上线后可能出现的问题。以下是一些关于预发布环境测试能力建设的关键步骤和建议:

  1. 环境搭建与配置
    • 预发布环境应尽可能地模拟生产环境,包括硬件、软件、网络配置等。
    • 确保预发布环境的数据库与生产环境同步,包括数据结构和数据内容。
    • 为预发布环境配置独立的访问权限和安全管理机制,确保测试人员能够安全地进行测试工作。
  2. 测试流程与规范
    • 制定详细的测试计划和测试方案,明确测试目标、测试范围、测试方法等。
    • 建立测试用例管理制度,确保测试用例的完整性和有效性。
    • 制定测试执行和结果反馈的流程,确保测试工作能够有序进行。
  3. 自动化测试与工具应用
    • 引入自动化测试工具,提高测试效率和准确性。
    • 利用自动化测试工具进行回归测试,确保新功能不会引入旧问题。
    • 根据项目需求,开发或定制测试工具,满足特定的测试需求。
  4. 监控与告警
    • 在预发布环境中部署监控工具,实时收集系统性能、错误日志等信息。
    • 设置告警机制,当系统出现异常或错误时能够及时通知相关人员。
  5. 测试数据管理
    • 建立测试数据管理制度,确保测试数据的准确性和安全性。
    • 使用数据脱敏技术,保护生产数据的隐私性。
    • 定期清理和更新测试数据,确保测试环境的干净和有效。

九、测试充分性

1)用例内部评审和用例外部评审

2) 通过卡点行覆盖率来确定测试充分性,70%-80%

十、流量录制工具和技术

十一、上线前有哪些准备工作

在软件或应用上线前,为了确保其稳定性、安全性和用户体验,通常会进行一系列详细而周密的准备工作。以下是一些关键的上线前工作:

  1. 代码审核与优化
    • 对开发完成的代码进行严格的审核,确保代码质量、逻辑清晰且符合编码规范。
    • 优化代码性能,减少资源消耗,提高软件或应用的响应速度和稳定性。
  2. 功能测试与验证
    • 根据测试用例对软件或应用进行全面的功能测试,确保所有功能正常且符合预期。
    • 进行压力测试、性能测试等,验证软件或应用在各种场景下的表现。
  3. 安全测试与防护
    • 对软件或应用进行安全漏洞扫描和渗透测试,确保系统安全无虞。
    • 配置必要的安全防护措施,如防火墙、加密传输等,保障用户数据的安全。
  4. 用户体验测试与优化
    • 进行用户体验测试,收集用户反馈,对界面设计、操作流程等进行优化。
    • 确保软件或应用易于使用、操作流畅,提供良好的用户体验。
  5. 部署与配置
    • 在上线前准备好生产环境,包括服务器、网络、存储等资源。
    • 配置好软件或应用所需的各项参数和依赖项,确保能够正常运行。
  6. 备份与恢复计划
    • 制定详细的备份计划,定期备份数据以防万一。
    • 准备恢复计划,以便在出现问题时能够迅速恢复系统正常运行。
  7. 文档编写与整理
    • 编写用户手册、操作指南等相关文档,帮助用户更好地理解和使用软件或应用。
    • 整理项目过程中的文档资料,便于后续维护和升级。
  8. 团队协作与沟通
    • 与开发、测试、运维等相关团队保持紧密沟通,确保各方工作协同一致。
    • 制定上线计划,明确各项工作的责任人和时间节点。
  9. 版本控制与发布
    • 使用版本控制工具管理代码版本,确保每次上线都是经过审核和验证的版本。
    • 制定发布策略,包括发布时间、发布渠道等,确保上线过程顺利进行。
  10. 监控与告警配置
    • 配置监控工具,实时监控软件或应用的运行状态和性能指标。
    • 设置告警机制,当系统出现异常或错误时能够及时通知相关人员进行处理。

通过完成以上工作,可以确保软件或应用在上线前具备足够的稳定性、安全性和用户体验,降低上线后的风险和问题。同时,也可以为后续的维护和升级工作打下坚实的基础。

八、你有什么要问题的

1 我看你们公司招聘很多岗位,甚至测试leader都在招聘,是什么原因呢

2 看到jd里提到预发布环境测试能力建设

### 数据科学家面试准备 对于即将参加数据科学领域特别是马上消费公司的面试者来说,充分理解所需技能以及常见的面试问题至关重要。针对这一职位的候选人应具备强大的编程能力、统计分析能力和商业敏感度。 #### 编程与工具熟练程度 在技术方面,应聘者应当精通Python或R这样的主流数据分析语言之一,并能运用这些工具处理大规模数据集。此外,SQL数据库查询也是必不可少的一项技能[^4]。 #### 统计理论基础 深入理解和应用各种统计方法论是成功的关键所在。这不仅限于基本的概率分布和假设检验,还包括高级主题如时间序列预测、分类算法等。掌握不同模型的选择依据及其适用场景非常重要[^3]。 #### 商业洞察力 除了硬核的技术实力外,能够将复杂的数据转化为可操作性的见解同样重要。这意味着要能够在特定行业背景下解释结果的意义并据此提出合理的建议。例如,在金融行业中识别风险因素;零售环境中优化库存管理策略等等[^1]。 #### 实际案例研究 准备好讨论具体的项目经历可以大大增加获得工作的机会。挑选那些展示了从原始数据到最终解决方案全过程的例子最为理想——包括但不限于收集整理资料、清理预处理阶段遇到挑战时采取措施、特征工程设计思路、选用何种评估指标衡量性能表现等方面的内容[^2]。 #### 常见面试题目示例 - **描述一次完整的机器学习项目流程** - 这一问题旨在考察候选人的整体思维框架和技术实现细节。 - **如何解决过拟合现象?** - 探讨正则化参数调整、交叉验证等防止模型过度适应训练样本的方法。 - **解释A/B测试原理及其应用场景** - 展现对实验设计的理解水平,特别是在互联网产品迭代过程中利用此手段做出明智决策的能力。 ```python import pandas as pd from sklearn.model_selection import train_test_split, cross_val_score from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # 加载数据集 data = pd.read_csv('example.csv') # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(data.drop(columns=['target']), data['target'], test_size=0.2) # 创建逻辑回归模型实例 model = LogisticRegression() # 使用k折交叉验证评估模型准确性 scores = cross_val_score(model, X_train, y_train, cv=5) print(f'Cross-validation scores: {scores}') # 训练模型并在测试集上进行预测 model.fit(X_train, y_train) predictions = model.predict(X_test) # 输出准确率 accuracy = accuracy_score(y_test, predictions) print(f'Test set accuracy: {accuracy}') ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值