原生python实现knn分类算法

一、题目分析
K最近邻(k-Nearest Neighbor,KNN)分类算法是最简单的机器学习算法。 KNN算法的指导思想是“近朱者赤,近墨者黑”,由你的邻居来推断出你的类别。本质上,KNN算法就是用距离来衡量样本之间的相似度。
二、算法设计
2.1、计算步骤
1)算距离:给定测试对象,计算它与训练集中的每个对象的距离
2)找邻居:圈定距离最近的k个训练对象,作为测试对象的近邻
3)做分类:根据这k个近邻归属的主要类别,来对测试对象分类
2.2、相似度的衡量
 距离越近应该意味着这两个点属于一个分类的可能性越大。
但,距离不能代表一切,有些数据的相似度衡量并不适合用距离
 相似度衡量方法:欧式距离
2.3、类别的判定
 简单投票法:少数服从多数,近邻中哪个类别的点最多就分为该类。
 加权投票法:根据距离的远近,对近邻的投票进行加权,距离越近则权重越大(权重为距离平方的倒数)
三、源代码

import numpy as np
import operator

1.处理训练数据集
filename:
训练数据文件
return:
returnMat - 处理得到的每一个训练样本的数据集合
returnLabel - 每一个训练样本所属的类别标签集合

def trainingFile2Matrix(filename):
    """
    函数说明:
        处理训练数据集
    :param filename:
        训练数据文件
    :return:
        returnMat - 处理得到的每一个训练样本的数据集合
        returnLabel - 每一个训练样本所属的类别标签集合
    """
    file = open(filename)
    content = file.readlines()

    lineCount = len(content)

    returnMat = np.zeros((lineCount, 4))
    returnLabel = []

    index = 0

    for line in content:
        line = line.strip()
        example = line.split(',')

        returnMat[index, : ] = example[0 : 4]
        index += 1
        returnLabel.append(example[4])

    return returnMat, returnLabel

2.处理测试数据集
filename:
测试数据文件
return:
returnMat - 处理得到的每一个测试样本的数据集合

def testFile2Matrix(filename):
    """
    函数说明:
        处理测试数据集
    :param filename:
        测试数据文件
    :r
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿哈哈~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值