一、题目分析
K最近邻(k-Nearest Neighbor,KNN)分类算法是最简单的机器学习算法。 KNN算法的指导思想是“近朱者赤,近墨者黑”,由你的邻居来推断出你的类别。本质上,KNN算法就是用距离来衡量样本之间的相似度。
二、算法设计
2.1、计算步骤
1)算距离:给定测试对象,计算它与训练集中的每个对象的距离
2)找邻居:圈定距离最近的k个训练对象,作为测试对象的近邻
3)做分类:根据这k个近邻归属的主要类别,来对测试对象分类
2.2、相似度的衡量
距离越近应该意味着这两个点属于一个分类的可能性越大。
但,距离不能代表一切,有些数据的相似度衡量并不适合用距离
相似度衡量方法:欧式距离
2.3、类别的判定
简单投票法:少数服从多数,近邻中哪个类别的点最多就分为该类。
加权投票法:根据距离的远近,对近邻的投票进行加权,距离越近则权重越大(权重为距离平方的倒数)
三、源代码
import numpy as np
import operator
1.处理训练数据集
filename:
训练数据文件
return:
returnMat - 处理得到的每一个训练样本的数据集合
returnLabel - 每一个训练样本所属的类别标签集合
def trainingFile2Matrix(filename):
"""
函数说明:
处理训练数据集
:param filename:
训练数据文件
:return:
returnMat - 处理得到的每一个训练样本的数据集合
returnLabel - 每一个训练样本所属的类别标签集合
"""
file = open(filename)
content = file.readlines()
lineCount = len(content)
returnMat = np.zeros((lineCount, 4))
returnLabel = []
index = 0
for line in content:
line = line.strip()
example = line.split(',')
returnMat[index, : ] = example[0 : 4]
index += 1
returnLabel.append(example[4])
return returnMat, returnLabel
2.处理测试数据集
filename:
测试数据文件
return:
returnMat - 处理得到的每一个测试样本的数据集合
def testFile2Matrix(filename):
"""
函数说明:
处理测试数据集
:param filename:
测试数据文件
:r