Let's Chat

题目:

ACM (ACMers' Chatting Messenger) is a famous instant messaging software developed by Marjar Technology Company. To attract more users, Edward, the boss of Marjar Company, has recently added a new feature to the software. The new feature can be described as follows:

If two users, A and B, have been sending messages to each other on the last mconsecutive days, the "friendship point" between them will be increased by 1 point.

More formally, if user A sent messages to user B on each day between the (i - m + 1)-th day and the i-th day (both inclusive), and user B also sent messages to user A on each day between the (i - m + 1)-th day and the i-th day (also both inclusive), the "friendship point" between A and B will be increased by 1 at the end of the i-th day.

Given the chatting logs of two users A and B during n consecutive days, what's the number of the friendship points between them at the end of the n-th day (given that the initial friendship point between them is 0)?

Input

There are multiple test cases. The first line of input contains an integer T (1 ≤ T≤ 10), indicating the number of test cases. For each test case:

The first line contains 4 integers n (1 ≤ n ≤ 109), m (1 ≤ m ≤ n), x and y (1 ≤xy ≤ 100). The meanings of n and m are described above, while x indicates the number of chatting logs about the messages sent by A to B, and y indicates the number of chatting logs about the messages sent by B to A.

For the following x lines, the i-th line contains 2 integers lai and rai (1 ≤lai ≤ rai ≤ n), indicating that A sent messages to B on each day between thelai-th day and the rai-th day (both inclusive).

For the following y lines, the i-th line contains 2 integers lbi and rbi (1 ≤lbi ≤ rbi ≤ n), indicating that B sent messages to A on each day between thelbi-th day and the rbi-th day (both inclusive).

It is guaranteed that for all 1 ≤ i < xrai + 1 < lai + 1 and for all 1 ≤ i <yrbi + 1 < lbi + 1.

<h4< dd="">
Output

For each test case, output one line containing one integer, indicating the number of friendship points between A and B at the end of the n-th day.

<h4< dd="">
Sample Input
2
10 3 3 2
1 3
5 8
10 10
1 8
10 10
5 3 1 1
1 2
4 5
<h4< dd="">
Sample Output
3
0
<h4< dd="">
Hint

For the first test case, user A and user B send messages to each other on the 1st, 2nd, 3rd, 5th, 6th, 7th, 8th and 10th day. As m = 3, the friendship points between them will be increased by 1 at the end of the 3rd, 7th and 8th day. So the answer is 3.



思路:

以前做过用数组求公共区间的问题,一开始想用数组,但是n太大了,数组装不了,所以我选用了链表,但还是超过内存,超时的。

后来在网上看到一种做法用二维数组来存储区间,通过最大左边界和最小右边界的差来判断公共区间的大小。

参考代码:

#include<cstdio> 
#include<algorithm>
using namespace std;

int main()
{
	int T,n,m,x,y;
	
	scanf("%d",&T);
	while(T --)
	{
		int AB[101][2],BA[101][2];
		int score = 0;
		scanf("%d %d %d %d",&n,&m,&x,&y);
		for(int i = 0;i < x;i ++)
		{
			scanf("%d %d",&AB[i][0],&AB[i][1]);
		}
		for(int i = 0;i < y;i ++)
		{
			scanf("%d %d",&BA[i][0],&BA[i][1]);
		}
	
		for(int i = 0;i < x;i ++)
		{
			if(AB[i][1] - AB[i][0] < m-1)
			continue;
			for(int j = 0;j < y;j ++)
			{
				if(BA[j][1]-BA[j][0] < m-1)
				continue;
				int l = max(AB[i][0],BA[j][0]);
				int r = min(AB[i][1],BA[j][1]);
				int len = r - l + 1;
				if(len >= m)
				score += len - m + 1;
			}
		}
		printf("%d\n",score);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值