瑞利信道PSK误比特率分析

本文详细探讨了在瑞利衰落信道下,二进制PSK(BPSK)和四进制相移键控(QPSK)的误比特率理论,通过相干检测法,从高斯信道模型扩展到瑞利分布情况,提供了QPSK误符号率的计算方法。关键公式和《数字通信》中的4-3-14和4-3-15章节内容被引用作为依据。
摘要由CSDN通过智能技术生成

高斯信道下的PSK误比特率理论公式到处都是,但是瑞利信道下的误比特率分析找了很久,终于找到了。

BPSK:P_{b}=0.5\times (1-\sqrt{SNR/(1+SNR))}))

QPSKP_{b}=-0.25(1-\sqrt{SNR/(1+SNR}))^{2}+(1-\sqrt{SNR/(1+SNR}))

二进制PSK误比特率分析(以下来自《数字通信》):

发送信号s(t),接收信号r(t)=\alpha e^{j\phi}s(t)+n(t)

考虑慢衰落信道,相移\phi可以从接收信号中准确估计出来(相干检测)。

\alpha是固定的时,类似高斯信道模型:

二进制PSK的理论误比特率为P_{b}(\gamma )=Q\sqrt{2\gamma},其中信噪比\gamma =\alpha ^{2}\varepsilon _{s}/N_{0}

P_{b}=\int_{0}^{\infty } P_{b}(\gamma )p(\gamma )d\gamma

\alpha是瑞利分布时,\alpha ^{2}服从具有2个自由度的卡方分布,所以\gamma也服从卡方分布。

所以p(\gamma )=1/\bar{\gamma} \times e^{-\gamma/\bar{\gamma}},其中平均信噪比\bar{\gamma}=E(\alpha ^{2})\varepsilon _{s}/N_{0}

积分得到P_{b}=0.5\times (1-\sqrt{\bar{\gamma} /(1+\bar{\gamma}))}))

《数字通信》P152 公式4-3-14,4-3-15

M=4时,相当于两路相互独立的二进制相位调制。M=4的符号正确率为P_{c}=(1-P_{b})^2,

所以QPSK的误符号率为P_{e}=1-P_{c}=(1-\sqrt{\frac{\overline{\gamma} }{1+\overline{\gamma}}})-0.25(1-\sqrt{\frac{\overline{\gamma}}{1+\overline{\gamma}}})^2

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值