如何理解机器学习评估指标AUC?

在机器学习中,模型评估是非常重要的一环,没有评估就没有优化可言。我们一般熟悉的准确率、召回率、F1值、均方误差等都是评估指标,AUC是其中最常见且好用的指标之一。

AUC 是什么?

在机器学习中,常用AUC来评估二分类模型的性能。AUC全称曲线下面积,曲线指的是ROC曲线。ROC曲线最早用于第二次世界大战的雷达工程中,后用于医学、机器学习等领域。
对于二分类问题,模型会对每个样本预测一个得分s或者概率p。然后选择一个阈值t
,将得分s>t的样本划分为正,将s<t的样本划分为负,因此可以将样本分为如下四类:

  • TP(正正例)将正样本预测为正的数目
  • FP(假正例)将负样本预测为正的数目
  • FN(假负例)将正样本预测为负的数目
  • TN(真负例)将负样本预测为负的数目
预测为正预测为负
正样本TPFN
负样本FPTN

我们注意到,当我们选取不同的t时,上面四个值是会发生变化的。因此我们定义真正率TPR和假正率FPR为:
TPR = TP TP + FN FPR = FP FP + TN \text{TPR} = \frac{\text{TP}}{\text{TP} + \text{FN}}\\ \text{FPR} = \frac{\text{FP}}{\text{FP} + \text{TN}} TPR=TP+FNTPFPR=FP+TNFP

TPR:分母是正样本数;分子是得分>t里面的正样本的数目
FPR:分母是负样本数;分子是得分>t里面的负样本的数目

因此,如果定义 N + ( t ) , N − ( t ) N_+(t), N_-(t) N+(t),N(t)分别为得分大于t的样本中正负样本数目, N + , N − N_+, N_- N+,N为总的正负样本数目, 那么TPR和FPR可以表达为阈值t的函数

TPR ( t ) = N + ( t ) N + FPR ( t ) = N − ( t ) N − \text{TPR}(t) = \frac{N_+(t)}{N_+} \\ \text{FPR}(t) = \frac{N_-(t)}{N_-} TPR(t)=N+N+(t)FPR(t)=NN(t)
随着阈值t的变化,TPR和FPR在坐标图上形成一条曲线,这条曲线就是ROC曲线。 显然,如果模型是随机的,模型得分对正负样本没有区分性,那么得分大于t的样本中,正负样本比例和总体的正负样本比例应该基本一致。 也就是说

N + ( t ) N − ( t ) = N + N − \frac{N_+(t)}{N_-(t)} = \frac{N_+}{N_-} N(t)N+(t)=NN+
结合上面的式子可知TPR和FPR相等,对应的ROC曲线是一条直线!

反之,如果模型的区分性非常理想,也就是说正负样本的得分可以完全分开,所有的正样本都比负样本得分高,此时ROC曲线表现为「 字形。 因为正例得分都比负例搞,所以要么TPR=0要么FPR=0!
在这里插入图片描述
实际的模型的ROC曲线则是一条上凸的曲线,介于随机和理想的ROC曲线之间。而ROC曲线下的面积,即为AUC!

AUC = ∫ t = ∞ − ∞ y ( t ) d x ( t ) \text{AUC} = \int_{t=\infty}^{-\infty} y(t) d x(t) AUC=t=y(t)dx(t)

AUC的概率解释

如何用一句话解释AUC:AUC可以看做是随机从样本中选取一对正负样本,其中正样本的得分大于负样本的概率。因此,AUC常常被用来作为模型排序好坏的指标,AUC越大说明排在前面的正样本概率越大。

这个结论很容易证明,考虑随机取得这对正负样本中,负样本得分在[t, t+\Delta t]之间的概率为
P ( t ≤ s − &lt; t + Δ t ) = P ( s − &gt; t ) − P ( s − &gt; t + Δ t ) = N − ( t ) − N − ( t + Δ t ) N − = x ( t ) − x ( t + Δ t ) = − Δ x ( t ) P(t \le s_- &lt; t+\Delta t) \\ = P( s_- \gt t) - P(s_- &gt; t+\Delta t) \\ = \frac{N_-(t) - N_-(t+\Delta t)}{N_-} \\ = x(t) - x(t +\Delta t) = - \Delta x(t) P(ts<t+Δt)=P(s>t)P(s>t+Δt)=NN(t)N(t+Δt)=x(t)x(t+Δt)=Δx(t)

如果Δt很小,那么该正样本得分大于该负样本的概率为

P ( s + &gt; s − ∣ t ≤ s − &lt; t + Δ t ) ≈ P ( s + &gt; t ) = N + ( t ) N + = y ( t ) P(s_+ &gt; s_- | t \le s_- &lt; t+\Delta t) \\ \approx P(s_+ &gt; t) = \frac{N_+(t)}{N_+} = y(t) P(s+>sts<t+Δt)P(s+>t)=N+N+(t)=y(t)
所以,
P ( s + &gt; s − ) = ∑ P ( t ≤ s − &lt; t + Δ t ) P ( s + &gt; s − ∣ t ≤ s − &lt; t + Δ t ) = − ∑ y ( t ) Δ x ( t ) = − ∫ t = − ∞ ∞ y ( t ) d x ( t ) = ∫ t = ∞ − ∞ y ( t ) d x ( t ) P(s_+ &gt; s_- ) \\ = \sum P(t \le s_- &lt; t+\Delta t) P(s_+ &gt; s_- | t \le s_- &lt; t+\Delta t) \\ = -\sum y(t) \Delta x(t) \\ = -\int_{t=-\infty}^{\infty} y(t) d x(t) \\ = \int_{t=\infty}^{-\infty} y(t) d x(t) P(s+>s)=P(ts<t+Δt)P(s+>sts<t+Δt)=y(t)Δx(t)=t=y(t)dx(t)=t=y(t)dx(t)
注意积分区间, t = − ∞ t=-\infty t=对应ROC图像最右上角的点,而t=∞对应ROC图像最左下角的点。所以,计算面积是 ∫ t = ∞ − ∞ \int_{t=\infty}^{-\infty} t=。 可以看出,积分项里面实际上是这样一个事件的概率:随机取一对正负样本,负样本得分为t且正样本大于t! 因此,对这个概率微元积分就可以到正样本得分大于负样本的概率!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值