机器学习中的AUC是什么

AUC(Area Under Curve)是ROC曲线下的面积,衡量分类器区分正负类的能力。ROC曲线的横轴是假阳性率(FP),纵轴是真阳性率(TP)。AUC取值范围在0.5到1之间,1表示完美分类,0.5表示随机猜测。在样本不平衡时,AUC仍能提供有效评估,但极端不平衡时可能失真,此时使用AUC of PR可能更合适。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一句话解释

AUC(Area under curve)曲线下面区域的面积,这条曲线一般指ROC(Receiver operator characteristic curve)曲线。

详细解释

首先,需要了解一个混淆矩阵:

在这个混淆矩阵中,有预测类别(positive和negative)和真实类别(true和false)。

这样就会产生以下概念:

TP(ture positive)真阳率:TP=\frac{TP}{TP+FN} 在所有正类样本中,预测为正类的比例;

FP(false positive)假阳率:FP=\frac{FP}{FP+TN} 在所有负类样本中,预测为正类

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值