机器学习中的AUC是什么

AUC(Area Under Curve)是ROC曲线下的面积,衡量分类器区分正负类的能力。ROC曲线的横轴是假阳性率(FP),纵轴是真阳性率(TP)。AUC取值范围在0.5到1之间,1表示完美分类,0.5表示随机猜测。在样本不平衡时,AUC仍能提供有效评估,但极端不平衡时可能失真,此时使用AUC of PR可能更合适。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一句话解释

AUC(Area under curve)曲线下面区域的面积,这条曲线一般指ROC(Receiver operator characteristic curve)曲线。

详细解释

首先,需要了解一个混淆矩阵:

在这个混淆矩阵中,有预测类别(positive和negative)和真实类别(true和false)。

这样就会产生以下概念:

TP(ture positive)真阳率:TP=\frac{TP}{TP+FN} 在所有正类样本中,预测为正类的比例;

FP(false positive)假阳率:FP=\frac{FP}{FP+TN} 在所有负类样本中,预测为正类

AUC机器学习中一种常用的模型评价指标,全称为Area Under the ROC Curve,中文名为ROC曲线下的面积。它用于衡量分类模型的性能,特别适用于二分类问题。AUC的取值范围在0到1之间,其中AUC=1表示完美分类器,AUC=0.5表示随机分类器。 AUC的计算过程是基于ROC曲线,ROC曲线是以不同的阈值为基础,计算出模型的真阳性率(True Positive Rate)和假阳性率(False Positive Rate),并以假阳性率为横坐标,真阳性率为纵坐标绘制出来的曲线。AUC即为ROC曲线下的面积,通过计算AUC可以评估分类模型在不同阈值下的性能表现。 相比于其他评价指标如准确率(accuracy)、精确率(precision)和对数损失(logloss),AUC具有以下优势: 1. 不受类别不平衡问题的影响:AUC通过计算真阳性率和假阳性率来衡量模型的性能,不依赖于具体的分类阈值,因此不受类别分布不平衡的影响。 2. 对于概率预测结果的评估:许多机器学习模型的分类结果是概率值,而AUC可以直接使用这些概率值进行评估,而不需要手动设置分类阈值。 因此,在机器学习中,AUC是一个常用的模型评价指标,用于衡量分类模型的性能,特别适用于二分类问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [机器学习篇-指标:AUC](https://blog.csdn.net/fanfangyu/article/details/122885441)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [基于机器学习算法的糖尿病预测模型研究](https://download.csdn.net/download/weixin_47367099/85230856)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值