完全背包
时间限制:
3000 ms | 内存限制:
65535 KB
难度:
4
-
描述
-
直接说题意,完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的体积是c,价值是w。求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大。本题要求是背包恰好装满背包时,求出最大价值总和是多少。如果不能恰好装满背包,输出NO
-
输入
-
第一行: N 表示有多少组测试数据(N<7)。
接下来每组测试数据的第一行有两个整数M,V。 M表示物品种类的数目,V表示背包的总容量。(0<M<=2000,0<V<=50000)
接下来的M行每行有两个整数c,w分别表示每种物品的重量和价值(0<c<100000,0<w<100000)
输出
- 对应每组测试数据输出结果(如果能恰好装满背包,输出装满背包时背包内物品的最大价值总和。 如果不能恰好装满背包,输出NO) 样例输入
-
2 1 5 2 2 2 5 2 2 5 1
样例输出
-
NO 1
上传者
- ACM_赵铭浩
-
第一行: N 表示有多少组测试数据(N<7)。
这里就是将f数组初始化一个负值判断是否能装满但是f[0]=0
#include <iostream>
#include<cstdio>
#include<cstring>
#define maxn 2020
using namespace std;
int c[maxn],w[maxn],f[50050];
int main()
{
int n,m,v;
scanf("%d",&n);
while(n--)
{
scanf("%d%d",&m,&v);
for(int i=1;i<=m;++i)
scanf("%d%d",&c[i],&w[i]);
memset(f,0,sizeof(f));
for(int i=1;i<=v;++i)
f[i]=-999999;//这里我用-1000就WA
for(int i=1;i<=m;++i)
{
for(int j=c[i];j<=v;++j)
f[j]=f[j]>f[j-c[i]]+w[i]?f[j]:f[j-c[i]]+w[i];
}
if(f[v]<0)
printf("NO\n");
else
printf("%d\n",f[v]);
}
return 0;
}