Leetcode每日一题:49.group-anagrams(字母异位词分组)

在这里插入图片描述
这道题我认为题目没有写清楚,测试用例中两个完全相同的字符串也归为一组,然而从题意中我们会认为这两个字符串只需放入一个即可

解题思路:

	方法1:利用hash + map 先用hash判断字符串是否相同 以及相同时该插入vector的位置
	方法2:利用sort + map 先用sort排序字符串 然后在map中找到该插入vector的位

在这里插入图片描述

//方法一 hash+map
class Solution {
public:
    int hash1(string s) //hash判断字母是否相同
    {
        long res1=1,res2=2;
        int len = s.size();
        if (len == 0)
            return -1;
         //这里傻傻的自己尝试hash解决冲突 , 其实用质数当因子就可以解决,一般来说无冲突
        for (int i = 0; i < len; i++)
        {
            res1 = res1 * (s[i]);
            if (res1 > INT_MAX)
                res1 = res1 % INT_MAX;
        }
        for (int i = 0; i < len; i++)
        {
            res2 = res2 * (s[i] +len);
            if (res2 > INT_MAX)
                res2 = res2 % INT_MAX;
        }
        return res1+res2;
        
    }
    vector<vector<string>> groupAnagrams(vector<string> &strs)
    {
        int len = strs.size();
        vector<vector<string>> res;
        if (len == 0)
            return res;
        map<int, bool> mp1; //hash1,是否出现
        map<int, int> mp2;//hash1,序号
        int count = 0;
        for (auto s : strs)
        {
            int a = hash1(s);
            if (mp1[a] == 0) //没出现过该字符串
            {
                mp1[a] = true;
                mp2[a] = count++;
                vector<string> temp;
                temp.push_back(s);
                res.push_back(temp);
                continue;
            }
            //出现过
            res[mp2[a]].push_back(s);
        }
        return res;
    }
};

建立hash表
int primes[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97, 101,103,105};
然后 res *= primes[s[i]-‘a’];
在这里插入图片描述
写的时候感觉效率应该会提升,实际上并不高;由此可见hash的效率

//方法二
vector<vector<string>> groupAnagrams(vector<string> &strs)
{
    vector<vector<string>> res;
    map<string,int> mp;//<字符串,下标>
    int sub=0;//用于找到插入的下标
    string temp;
    for(auto s:strs)
    {
        temp=s;
        sort(temp.begin(),temp.end());//排序 两个相同的字符串 排序结果一致
        if(mp.count(temp))
        {
            res[mp[temp]].push_back(s);
        }
        else
        {
            vector<string> vs;
            vs.push_back(s);
            res.push_back(vs);
            mp[temp]=sub++;
        }
    }
    return res;
}
内容概要:本文详细介绍了基于结构不变补偿的电液伺服系统低阶线性主动干扰抑制控制(ADRC)方法的实现过程。首先定义了电液伺服系统的基本参数,并实现了结构不变补偿(SIC)函数,通过补偿非线性项和干扰,将原始系统转化为一阶积分链结构。接着,设计了低阶线性ADRC控制器,包含扩展状态观测器(ESO)和控制律,用于估计系统状态和总干扰,并实现简单有效的控制。文章还展示了系统仿真与对比实验,对比了低阶ADRC与传统PID控制器的性能,证明了ADRC在处理系统非线性和外部干扰方面的优越性。此外,文章深入分析了参数调整与稳定性,提出了频域稳定性分析和b0参数调整方法,确保系统在参数不确定性下的鲁棒稳定性。最后,文章通过综合实验验证了该方法的有效性,并提供了参数敏感性分析和工程实用性指导。 适合人群:具备一定自动化控制基础,特别是对电液伺服系统和主动干扰抑制控制感兴趣的科研人员和工程师。 使用场景及目标:①理解电液伺服系统的建模与控制方法;②掌握低阶线性ADRC的设计原理和实现步骤;③学习如何通过结构不变补偿简化复杂系统的控制设计;④进行系统仿真与实验验证,评估不同控制方法的性能;⑤掌握参数调整与稳定性分析技巧,确保控制系统在实际应用中的可靠性和鲁棒性。 阅读建议:本文内容详尽,涉及多个控制理论和技术细节。读者应首先理解电液伺服系统的基本原理和ADRC的核心思想,然后逐步深入学习SIC补偿、ESO设计、控制律实现等内容。同时,结合提供的代码示例进行实践操作,通过调整参数和运行仿真,加深对理论的理解。对于希望进一步探索的读者,可以关注文中提到的高级话题,如频域稳定性分析、参数敏感性分析等,以提升对系统的全面掌控能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值