一种期望边数为O(nlogn)的随机联通图生成方法

在做软件构造实验生成随机图时,随意用二重循环写了一种生成方式。后来发现它可以保证联通并且边数的大小是 O ( n l o g n ) O(nlogn) O(nlogn).这个结论虽然并不难证,但是觉得比较神奇,于是做一下记录。

代码

for(int i = 0; i < N; i++) {
    int pace = rand.nextInt(N / 10) + 1;
    for(int j = 0; j < N; j += pace) {
        graph.addEdge(person[i], person[j]);
        graph.addEdge(person[j], person[i]);
    }
}

分析

首先,由于对任意的 i i i,点 0 0 0和点 i i i都连了一条边,因此图一定是联通的;下面计算它的边数期望。设总边数为 e e e,在第 i i i次循环中生成的边数为 e i e_i ei,因此有

e = e 1 + e 2 + . . . + e n ; e=e_1+e_2+...+e_n; e=e1+e2+...+en;

我们每次在二重循环中取一个随机步长,设第 i i i次的步长为 p i p_i pi,那么有

e = n p 1 + n p 2 + . . . + n p n . e=\frac{n}{p_1}+\frac{n}{p_2}+...+\frac{n}{p_n}. e=p1n+p2n+...+pnn.

取期望,有

E ( e ) = E ( n p 1 + n p 2 + . . . + n p n ) = n E ( 1 p 1 + 1 p 2 + . . . + 1 p n ) = n 2 E ( 1 p i ) . E(e)=E(\frac{n}{p_1}+\frac{n}{p_2}+...+\frac{n}{p_n})=nE(\frac1{p_1}+\frac1{p_2}+...+\frac1{p_n})=n^2E(\frac1{p_i}). E(e)=E(p1n+p2n+...+pnn)=nE(p11+p21+...+pn1)=n2E(pi1).

我们取 p i p_i pi为独立同分布的 1 , 2 , . . . , b 1,2,...,b 1,2,...,b的离散随机分布,有

E ( 1 p i ) = 1 × 1 b + 1 2 × 1 b + . . . + 1 b × 1 b = 1 b ( 1 + 1 2 + . . . + 1 b ) . E(\frac1{p_i})=1\times\frac1b+\frac12\times\frac1b+...+\frac1b\times\frac1b=\frac1b(1+\frac12+...+\frac1b). E(pi1)=1×b1+21×b1+...+b1×b1=b1(1+21+...+b1).

由调和级数部分和的近似,有

E ( p i ) ≈ 1 b l n ( b + 1 ) + γ ; E(p_i)\approx\frac1bln(b+1)+\gamma; E(pi)b1ln(b+1)+γ;

其中 γ \gamma γ为欧拉常数,约为 0.5772156649. 0.5772156649. 0.5772156649.因此

E ( e ) ≈ n 2 E ( p i ) = n 2 ( l n ( b + 1 ) + γ ) / b . E(e)\approx n^2E(p_i)=n^2(ln(b+1)+\gamma)/b. E(e)n2E(pi)=n2(ln(b+1)+γ)/b.

当取 b b b n n n的倍数如 n / 10 n/10 n/10时,

E ( e ) ≈ n 2 ( l n ( n / 10 + 1 ) + γ ) / ( n / 10 ) = 10 n ( l n ( n / 10 + 1 ) + γ ) = O ( n l o g n ) . E(e)\approx n^2(ln(n/10+1)+\gamma)/(n/10)=10n(ln(n/10+1)+\gamma)=O(nlogn). E(e)n2(ln(n/10+1)+γ)/(n/10)=10n(ln(n/10+1)+γ)=O(nlogn).

我们可以验证一下:

#include<bits/stdc++.h>
const double gamma = 0.5772156649;
int main() {
	for(int N = 100; N <= 1e7; N *= 10) {
		int cnt = 0;
		int b = N / 10;
		std::uniform_int_distribution<unsigned> u(1, b);
		std::default_random_engine e(time(0));
		for(int i = 0; i < N; i++) {
			int pace = u(e);
			for(int j = 0; j < N; j += pace)
				cnt++;
		}
		double expectation  = 10 * N * (log(N / 10 + 1) + gamma);
		printf("N = %d:%d, expectation = %lf(%lf)\n", N, cnt, expectation, fabs(cnt - expectation) / expectation);
	}
	return 0;
}

在这里插入图片描述
可以看到随着 N N N数量级增大,实际值与期望值的相对误差越来越小,说明结论成立。

  • 5
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值