机器学习-9.逻辑回归

  • 逻辑回归是将线性回归的结果通过sigmoid函数映射到0到1的区间内,而[0,1]对应百分比即概率,从而转化为分类问题
  • 逻辑回归只能解决二分类问题。
  • 公式:
    h θ ( x ) = g ( θ T x ) = 1 1 + e − θ T x h_\theta(x) =g(\theta^Tx)=\frac{1}{1+e^{-\theta^Tx}} hθ(x)=g(θTx)=1+eθTx1
    g ( z ) = 1 1 + e − z g(z)=\frac{1}{1+e^{-z}} g(z)=1+ez1
  • e为常数:2.71;默认0.5作为阀值;z为线性回归的结果
  • g(z)为sigmoid函数。
    在这里插入图片描述
  • 逻辑回归的损失函数:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • 损失函数目前整理了两种:
    1. 均方误差:不存在局部最低点,只有一个最小值,通过梯度下降可以求出最低点。
    2. 对数似然损失:如下图所示存在多个局部最低点,通过梯度下降求出的结果有可能不是全局最低点。目前这种问题无法彻底解决,只能尽量改善优化:
      1). 梯度下降求解时多次随机初始化,多次比较最小值结果取最小值。
      2). 求解过程中,调整学习率。
      在这里插入图片描述
  • API:sklearn.linear_model.LogisticRegression
    在这里插入图片描述
    penalty:正则化,C:正则化力度。
  • 案例:良/恶性乳腺癌肿瘤预测
  • 数据:https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data
  • 数据介绍:https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.names
    在这里插入图片描述
    由上图可以看出:
    在这里插入图片描述
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report
import pandas as pd
import numpy as np

def logistic():
    '''
    逻辑回归做二分类进行癌症肿瘤预测
    :return: None
    '''
    # 构造列标签名字,查看数据可以发现没有列标签名字
    column = ['Sample code number','Clump Thickness','Uniformity of Cell Size','Uniformity of Cell Shape','Marginal Adhesion','Single Epithelial Cell Size','Bare Nuclei','Bland Chromatin','Normal Nucleoli','Mitoses','Class']

    # 读取数据
    data = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data",names=column)

    # 确实值处理
    data = data.replace(to_replace="?",value=np.nan)
    data = data.dropna()

    # 数据分割
    x_train, x_test, y_train, y_test = train_test_split(data[column[1:10]], data[column[10]], test_size=0.25)

    # 标准化处理
    std = StandardScaler()
    x_train = std.fit_transform(x_train)
    x_test = std.transform(x_test)

    # 逻辑回归预测
    lg = LogisticRegression(C=1.0)
    lg.fit(x_train,y_train)
    y_predict = lg.predict(x_test)
    print(lg.coef_)
    print("准确率:", lg.score(x_test,y_test))
	# 因为本次是预测肿瘤,所以精确率意义不大,重点考察召回率
    print("分类预测指标报告:", classification_report(y_test, y_predict, labels=[2,4], target_names=["良性","恶性"]))
    return None


if __name__ == '__main__':
    logistic()

输出结果:
在这里插入图片描述

  • 逻辑回归总结
    应用:广告点击率预测,是否患病,金融诈骗,是否为虚假帐号等二分类问题。
    优点:适合需要得到一个分类概率的场景,简单,速度快。
    缺点:不太好处理多分类问题(需要一个一个去确定,比较复杂)。
  • 逻辑回归和朴素贝叶斯分类分析:
    1. 逻辑回归为二分类,朴素可多分类。
    2. 在应用场景上逻辑回归为二分类等需要得到概率的场景,朴素为文本分类。
    3. 逻辑回归有正则化力度等参数,朴素没有。
    4. 朴素贝叶斯需要先求出历史数据每个类别的概率(先验概率),逻辑回归不需要。
    5. 需要求先验概率的则为生成模型。否则为判别模型。
    6. 共性:两者在得出的结果上都有概率解释。
  • 判别模型:k-近邻、决策树、随机森林、逻辑回归、神经网络
  • 生成模型:朴素贝叶斯、隐马尔可夫模型
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值