机器学习算法之: 逻辑回归 logistic regression (LR)

本文详细介绍了逻辑回归的基本概念、工作原理及在二分类和多分类问题中的应用。逻辑回归是一种概率判别模型,因其训练速度快、模型解释性强而常用于工业界。文章阐述了最大似然估计在模型参数求解中的作用,并探讨了梯度下降法与随机梯度下降法在优化过程中的应用。此外,还讨论了正则化在防止过拟合中的重要性,并给出了实际数据集上的应用效果。
摘要由CSDN通过智能技术生成
by joey周琦

LR介绍

逻辑回归属于probabilistic discriminative model这一类的分类算法

probabilistic discriminative mode这类算法的思路如下:
- 直接建模 P(Ck|x)
- 利用最大似然估计和训练数据,估计出模型中的参数

该类想法相对于生成模型(probabilistic generated model) 有参数较少的优点。因为生成模型需要 P(x|Ck) 和先验概率 P(Ck) .

LR是工业界最长用的分类算法之一,其主要原因,个人认为有几点如下:

  • 训练速度快,扛得住大数据
  • 模型可解释度、可理解程度高,根据每个特征的系数,就可以判断出该特征在模型中的重要性,帮助判断模型是否合理
  • 可以接受的精度

本文,对LR做一个简单的总结

LR二分类

首先做下简单的符号说明,在下述推导中, N 为样本个数, M 为特征数目, xRM 为特征向量, K 为可分类的总数, P(Ck|x) 表示在特征向量的前提下,判别为第k类的概率。 wRM 为LR模型的参数,即训练LR的主要目的就是要得到 w

对于 K=2 类,建模如下:

P(C1|x)=y(x)=σ(wTx)=11+ewTx

σ 是logistic sigmoid function, 它有个性质(1):

dσ(a)da=σ(1σ)

其中 yn=σ(an) an=wTx 。假设我们有数据集{ xn,tn }, n=1...N ,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值