by joey周琦
LR介绍
逻辑回归属于probabilistic discriminative model这一类的分类算法
probabilistic discriminative mode这类算法的思路如下:
- 直接建模 P(Ck|x)
- 利用最大似然估计和训练数据,估计出模型中的参数
该类想法相对于生成模型(probabilistic generated model) 有参数较少的优点。因为生成模型需要 P(x|Ck) 和先验概率 P(Ck) .
LR是工业界最长用的分类算法之一,其主要原因,个人认为有几点如下:
- 训练速度快,扛得住大数据
- 模型可解释度、可理解程度高,根据每个特征的系数,就可以判断出该特征在模型中的重要性,帮助判断模型是否合理
- 可以接受的精度
本文,对LR做一个简单的总结
LR二分类
首先做下简单的符号说明,在下述推导中, N 为样本个数,
对于
P(C1|x)=y(x)=σ(wTx)=11+e−wTx
σ 是logistic sigmoid function, 它有个性质(1):
dσ(a)da=σ(1−σ)
其中 yn=σ(an) 且 an=wTx 。假设我们有数据集{ xn,tn }, n=1...N ,