【论文复现】基于注意力模块及1D-CNN的滚动轴承故障诊断研究(Python代码实现)

       💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、滚动轴承故障诊断的常用方法

1. 振动信号分析法

2. 油污染分析法(铁谱分析)

3. 其他方法

二、1D-CNN在时序信号处理中的优势

1. 特征提取能力

2. 结构优化

三、注意力模块的增强作用

1. 典型注意力模块

2. 技术优势

四、结合注意力模块与1D-CNN的典型架构

1. 模型设计

2. 训练配置

五、性能指标与实验结果

1. 准确率对比

2. 鲁棒性测试

3. 效率指标

六、应用前景与挑战

1. 工业应用

2. 技术挑战

七、结论

📚2 运行结果

🎉3 参考文献 

🌈4 Python代码、数据、文章


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于对滚动轴承故障诊断方法、注意力模块及1D-CNN的现有研究,以下从技术原理、模型架构、性能指标及应用前景等方面展开详述:


一、滚动轴承故障诊断的常用方法

滚动轴承故障诊断的核心在于捕捉由故障引发的振动信号特征。常用方法可分为以下三类:

1. 振动信号分析法
  • 峰值检测与峭度分析:通过检测振动加速度峰值并结合温度、噪声数据,评估故障发展趋势。峭度β值对脉冲型故障敏感,能有效识别早期故障。
  • 频谱分析:对比轴承特征频率(如外圈、内圈、滚动体故障频率)与数据库,通过FFT变换提取频域特征,适用于周期性故障检测。
  • 包络分析法:针对磨损类故障(无明显冲击脉冲),通过解调高频共振信号提取低频故障特征,显著提高诊断确定性。
  • 冲击脉冲传感器技术:利用32kHz带通滤波器捕捉冲击能量,通过dBsv(冲击能量分贝)、dBi(背景噪声分贝)等参数评估轴承状态。
2. 油污染分析法(铁谱分析)

通过分析润滑油中的金属颗粒成分和形态,判断轴承磨损程度。但易受其他部件磨损颗粒干扰,仅适用于油润滑轴承。

3. 其他方法
  • 温度监测:对润滑不良或过载敏感,但对早期点蚀、剥落不敏感。
  • 声发射技术:捕捉材料内部裂纹扩展的高频应力波,但信号处理复杂且成本较高。

二、1D-CNN在时序信号处理中的优势

1D-CNN专为一维时序数据设计,其核心优势包括:

1. 特征提取能力
  • 局部特征捕捉:通过卷积核滑动提取振动信号的局部时序模式(如冲击脉冲、周期性调制)。
  • 多尺度分析:并行使用不同尺寸的卷积核(如3×1、5×1),捕获不同时间尺度的故障特征。
  • 参数共享与平移不变性:对信号中相同模式的位置不敏感,适应不同工况下的故障特征。
2. 结构优化
  • 池化层替代全连接层:减少参数量(如从全连接层的百万级降至池化后的千级),防止过拟合并加速训练。
  • 端到端学习:直接输入原始振动信号,避免人工特征提取的局限性。

三、注意力模块的增强作用

注意力机制通过动态分配特征权重,优化模型对关键信息的关注,主要类型包括:

1. 典型注意力模块
  • 通道注意力(ECA、SENet) :通过特征通道的权重调整,增强与故障相关的频带响应。
  • 空间注意力(CBAM) :在时序维度上聚焦故障冲击的局部区域。
  • 全局注意力(GAM) :结合通道与空间注意力,实现多维特征的自适应融合。
2. 技术优势
  • 抗噪能力:在加噪数据(如信噪比1.2的高斯白噪声)中,GAM-1DCNN仍保持100%准确率。
  • 训练效率:引入注意力模块后,模型收敛速度提升(如CNN-AM在975次迭代即收敛,而传统1D-CNN需2700次)。
  • 可解释性:特征可视化显示注意力模块能强化故障特征(如外圈故障的周期性冲击),抑制背景噪声。

四、结合注意力模块与1D-CNN的典型架构

1. 模型设计
  • 输入层:原始振动信号(如CWRU数据集采样频率12kHz~48kHz)或加噪增强数据。
  • 特征提取层:多级“卷积+池化”单元,每层卷积核数量递增(如16→32→64),尺寸递减(如64→32→16)。
  • 注意力模块插入位置:通常位于深层卷积后(如第4个卷积单元),以聚焦抽象特征。
  • 分类层:双池化层(全局平均池化+最大池化)替代全连接层,接Softmax输出故障类别概率。
2. 训练配置
  • 优化器:Adam(学习率0.001)。
  • 损失函数:交叉熵损失。
  • 批次与迭代:mini-batch=32~64,训练周期30~3000次。

五、性能指标与实验结果

1. 准确率对比
  • 传统模型:SVM(94.90%)、随机森林(94.90%)。
  • 深度学习模型:原始1D-CNN(97.86%)、CNN-LSTM(97.5%)。
  • 结合注意力模块
    • CBAM-1DCNN(99.53%)
    • GAM-1DCNN(100%)
    • CNN-AM(99.89%训练集,99%测试集)。
2. 鲁棒性测试
  • 加噪数据:在SNR=1.2的高斯噪声下,GAM-1DCNN准确率保持100%。
  • 跨工况泛化:多尺度残差注意力域适应模型在跨机器任务中平均识别精度达99.1%。
3. 效率指标
  • 参数量:改进后的YOLOv8n结合注意力模块,参数量仅为原模型的77%。
  • 推理速度:1D-CNN+注意力模型的FPS(帧率)仅下降12%,满足实时监测需求。

六、应用前景与挑战

1. 工业应用
  • 预测性维护:实时监测风电、高铁等关键设备的轴承状态,减少非计划停机。
  • 多模态融合:结合振动信号与电机电流、声发射等多源数据,提升诊断可靠性。
2. 技术挑战
  • 小样本学习:在极端工况或故障样本稀缺时,需结合迁移学习或生成对抗网络(GAN)。
  • 边缘计算部署:模型轻量化(如知识蒸馏、剪枝)以适应嵌入式设备的算力限制。
  • 可解释性增强:通过梯度加权类激活图(Grad-CAM)可视化故障决策依据。

七、结论

基于注意力模块的1D-CNN模型通过局部特征提取与动态权重分配,显著提升了滚动轴承故障诊断的准确率与鲁棒性。未来研究可进一步探索多模态数据融合、小样本适应及边缘端部署优化,推动该技术在工业智能维护中的广泛应用。

📚2 运行结果

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

🌈Python代码、数据、文章

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值