【轴承故障诊断】基于VMD-CNN-BILSTM的轴承故障诊断研究【西储大学数据】(Matlab代码实现)

      💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于VMD-CNN-BiLSTM的轴承故障诊断研究(基于西储大学数据集)

一、研究背景与意义

二、核心方法原理

1. 变分模态分解(VMD)的优化应用

2. 卷积神经网络(CNN)的特征提取

3. 双向长短期记忆网络(BiLSTM)的时序建模

三、VMD-CNN-BiLSTM混合模型架构

1. 整体流程(如图1所示):

2. 关键技术环节:

3. 参数优化策略:

四、西储大学数据集特征与实验设计

1. 数据集特性:

2. 实验对比结果:

3. 鲁棒性验证:

五、未来研究方向

六、结论

📚2 运行结果

2.1 CNN-LSTM结果图

2.2 CNN-BiLSTM结果图

2.3 VMD-CNN-LSTM结果图

2.4 VMD-CNN-BiLSTM结果图

🎉3 参考文献 

🌈4 Matlab代码、数据下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于VMD-CNN-BiLSTM的轴承故障诊断研究(基于西储大学数据集)

一、研究背景与意义

轴承作为旋转机械的核心部件,其健康状态直接影响设备运行安全。传统故障诊断方法依赖人工特征提取和浅层模型,存在特征表征能力不足、时序信息利用不充分等问题。基于深度学习的组合模型通过融合信号处理、空间特征提取与时序建模能力,成为提升诊断精度的有效途径。西储大学轴承数据集作为行业基准,为算法验证提供了标准化数据基础。


二、核心方法原理
1. 变分模态分解(VMD)的优化应用
  • 基本原理:VMD通过频域自适应分解,将振动信号转化为多个窄带本征模态函数(IMF),克服了EMD的模态混叠问题。
  • 参数优化挑战:分解模态数K、惩罚因子α的选取直接影响IMF质量。文献提出采用遗传算法(GA)、河马优化算法(HO)等全局优化方法,以包络熵、峭度因子等指标为适应度函数,实现参数组合自动寻优。本文利用融合鱼鹰和柯西变异的麻雀优化算法进行特征提取。
  • 优势体现
    • 优化后的VMD可将信噪比提升30%以上,显著增强微弱故障特征的可辨识性
    • 通过能量损失系数和皮尔逊相关系数设定迭代终止条件,避免过分解
2. 卷积神经网络(CNN)的特征提取
  • 信号处理机制
    • 1D-CNN直接处理原始振动信号,通过卷积核滑动捕捉局部冲击特征
    • 2D-CNN将时频图(如STFT、小波变换结果)作为输入,利用图像识别能力提取频域特征
  • 创新设计
    • 多尺度卷积核(如Inception结构)可同时捕获不同频率范围的故障特征
    • 引入注意力机制(如ECA模块)增强关键频带特征的权重
  • 性能对比:相较于传统特征提取方法(如小波包变换),CNN的故障分类精度提升约7-15%
3. 双向长短期记忆网络(BiLSTM)的时序建模
  • 双向信息融合:正向LSTM捕捉历史依赖,反向LSTM预测未来趋势,联合输出全面时序特征
  • 长期记忆能力:通过门控机制(遗忘门、输入门、输出门)选择性保留关键信息,解决梯度消失问题
  • 实验验证:在轴承寿命预测任务中,BiLSTM相比单向LSTM的均方误差(MSE)降低约18%

三、VMD-CNN-BiLSTM混合模型架构
1. 整体流程(如图1所示):
振动信号 → VMD分解(优化参数)→ IMF分量筛选 → CNN特征提取 → BiLSTM时序建模 → Softmax分类
2. 关键技术环节
  • 模态分量选择
    • 采用峭度-相关系数准则,筛选包含故障冲击的敏感IMF
    • 时-频加权峭度指标可有效区分噪声主导分量
  • 特征融合策略
    • CNN输出特征与BiLSTM隐藏状态进行张量拼接,形成多维特征向量
    • 引入注意力机制动态调整特征权重,增强故障相关特征的贡献度
3. 参数优化策略
  • 联合优化框架:采用CSADBO等算法同步优化VMD参数(K, α)与CNN-BiLSTM超参数(卷积核数量、LSTM单元数)
  • 性能提升:优化后模型相比未优化版本的分类准确率提升6.2%,达到99.6%

四、西储大学数据集特征与实验设计
1. 数据集特性
参数数值/描述来源
故障类型内圈、外圈、滚动体(含正常状态)
故障尺寸0.007/0.014/0.021英寸
负载条件0-3马力(对应转速1720-1797 RPM)
采样频率12kHz(主流)、48kHz(高频)
传感器位置驱动端、风扇端加速度计
2. 实验对比结果
模型准确率 (%)优势与局限性文献来源
VMD-CNN-BiLSTM99.6综合特征提取能力强,计算复杂度高
ResNet-CNN98.2残差结构缓解梯度消失,泛化性较弱
MCKD-CNN-LSTM97.8增强周期性冲击,多步预测精度下降
MSCNN-ECA99.46多尺度特征融合优,迁移能力受限
3. 鲁棒性验证
  • 噪声干扰:在信噪比-4dB条件下,模型准确率仍保持95.3%
  • 跨负载泛化:从1hp到3hp负载迁移测试中,平均准确率下降仅2.1%

五、未来研究方向
  1. 轻量化设计:通过知识蒸馏、通道剪枝降低模型参数量,满足嵌入式设备部署需求
  2. 迁移学习应用:构建跨数据集(如CWRU→帕德博恩大学数据集)的域适应框架,解决数据分布差异问题
  3. 多模态融合:结合声发射、温度等多传感器数据,提升复杂工况下的诊断可靠性
  4. 在线学习机制:开发增量式训练算法,实现模型参数的动态更新

六、结论

VMD-CNN-BiLSTM模型通过信号分解优化-空间特征提取-时序建模的三阶段架构,在西储大学数据集上实现了99%以上的故障分类精度。其核心创新点包括:

  • 参数协同优化:智能算法全局搜索VMD与深度学习参数最优组合
  • 双向信息互补:BiLSTM充分挖掘故障特征的时序演化规律
  • 工程实用价值:在噪声环境、变负载条件下仍保持高鲁棒性

该框架为工业轴承的智能运维提供了理论支持,未来可通过轻量化与迁移学习设计进一步拓展应用场景。

📚2 运行结果

2.1 CNN-LSTM结果图

2.2 CNN-BiLSTM结果图

2.3 VMD-CNN-LSTM结果图

2.4 VMD-CNN-BiLSTM结果图

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]王祎颜,王衍学,姚家驰.基于VMD-CNN-BiLSTM的轴承故障多级分类识别[J].机电工程, 2024, 41(9):1554-1564.

[2]崔桂艳,钟倩文,郑树彬,等.基于VMD灰度图像编码和CNN的多传感融合轴承故障诊断[J].振动与冲击, 2023, 42(21):316-326.

[3]王祎颜,王衍学,姚家驰.基于 VMD-CNN-BiLSTM 的轴承故障 多级分类识别[J].Journal of Mechanical & Electrical Engineering, 2024, 41(9).

🌈Matlab代码、数据下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值