题目链接:http://poj.org/problem?id=2528
题目翻译:有一块宽度挺大的面板(宽度1e7),然后往墙上粘贴和面板相同高度的海报,但是宽度可能不同。
有N张海报,给出N张海报的起始位置和终止位置。问最后面板上可视的海报有多少个?
解题思路:
原来每想那么多,还是普通线段树写,宽度1e7,真的过不去。呵呵,感觉自己好傻好天真。
然后网上找了题解,说了和离散化有关,没有做过离散化的题目,看了以下,说是如果真的以
面板建线段树,数据太大,主要思想是将所有海报的起始和终止位置放在一起然后排序,根据
排序结果逐个编号,然后根据每个点的左右区间的编号构建线段树。但是他们都说普通离散化
处理这个题目是不对的。
【1,10】 【1,4】 【5,10】
排完序: 1 4 5 10
离散化后: 【1,4】 【1,2】 【3,4】
对于这组数据离散化后是正确的。
【1,10】 【1,4】 【6,10】 这组数据【5,5】会露出来。
离散化后:【1,4】 【1,2】 【3,4】 这个离散化后,结果是2,但是实际答案就是3,求出结
果不正确。
所以离散的时候,如果排序后,相邻两个数字间相差超过1,就在两个数字间加上一个数字(该数字为
这两个数字之间的数字)这样就可以了。
至于离散化,回头还得好好看看,其实还是没完全搞清楚,为啥这样离散化后可以与原来的等价。
AC代码:
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#define lchild left,mid,root<<1
#define rchild mid+1,right,root<<1|1
using namespace std;
const int maxn = 10010;
const int maxm = 1e7+10;
struct Point {
int x,y;
}p[maxn];
int ans,N;
int num[maxn<<4];
int m[maxn<<4];
int lazy[maxn<<4];
int vis[maxm];
void push_down(int left,int right,int root) {
if(lazy[root]) {
lazy[root<<1] = lazy[root];
lazy[root<<1|1] = lazy[root];
lazy[root] = 0;
}
}
void update(int L,int R,int color,int left,int right,int root) {
if(L<=left && right<=R) {
lazy[root] = color;
return;
}
push_down(left,right,root);
int mid = (left+right)>>1;
if(L<=mid) update(L,R,color,lchild);
if(R>mid) update(L,R,color,rchild);
}
void query(int left,int right,int root){
if(lazy[root]) {
if(vis[lazy[root]]==0) ans++;
vis[lazy[root]] = 1;
return;
}
if(left == right) return;
int mid = (left+right)>>1;
query(lchild);
query(rchild);
}
int binarySearch(int len,int x) {
int L,R,mid;
L = 1;
R = len;
while(L<=R) {
mid = (L+R)>>1;
if(m[mid]==x)
return mid;
if(m[mid]>x) {
R = mid-1;
} else {
L = mid+1;
}
}
return -1;
}
int main() {
int T;
scanf("%d",&T);
while(T--) {
scanf("%d",&N);
int cnt = 0;
memset(vis,0,sizeof(vis));
for(int i = 1; i <= N; i++) {
scanf("%d%d",&p[i].x,&p[i].y);
if(vis[p[i].x] == 0) {
num[cnt++] = p[i].x;
vis[p[i].x] = 1;
}
if(vis[p[i].y] == 0) {
num[cnt++] = p[i].y;
vis[p[i].y] = 1;
}
}
memset(lazy,0,sizeof(lazy));
memset(vis,0,sizeof(vis));
sort(num,num+cnt);
int newcnt = 0;
m[++newcnt] = num[0];
for(int i = 1; i < cnt; i++) {
if(num[i]-num[i-1]>1) {
m[++newcnt] = num[i-1]+1;
}
m[++newcnt] = num[i];
}
ans = 0;
for(int i = 1; i <= N; i++) {
int L,R;
L = binarySearch(newcnt,p[i].x);
R = binarySearch(newcnt,p[i].y);
update(L,R,i,1,newcnt,1);
}
query(1,newcnt,1);
printf("%d\n",ans);
}
return 0;
}