POJ 2528:Mayor's posters(线段树区间更新+离散化)

题目链接:http://poj.org/problem?id=2528



题目翻译:有一块宽度挺大的面板(宽度1e7),然后往墙上粘贴和面板相同高度的海报,但是宽度可能不同。

有N张海报,给出N张海报的起始位置和终止位置。问最后面板上可视的海报有多少个?


解题思路:

原来每想那么多,还是普通线段树写,宽度1e7,真的过不去。呵呵,感觉自己好傻好天真。

然后网上找了题解,说了和离散化有关,没有做过离散化的题目,看了以下,说是如果真的以

面板建线段树,数据太大,主要思想是将所有海报的起始和终止位置放在一起然后排序,根据

排序结果逐个编号,然后根据每个点的左右区间的编号构建线段树。但是他们都说普通离散化

处理这个题目是不对的。

【1,10】 【1,4】 【5,10】

排完序: 1 4 5 10

离散化后: 【1,4】 【1,2】 【3,4】

对于这组数据离散化后是正确的。

【1,10】 【1,4】 【6,10】 这组数据【5,5】会露出来。

离散化后:【1,4】 【1,2】 【3,4】 这个离散化后,结果是2,但是实际答案就是3,求出结

果不正确。

所以离散的时候,如果排序后,相邻两个数字间相差超过1,就在两个数字间加上一个数字(该数字为

这两个数字之间的数字)这样就可以了。


至于离散化,回头还得好好看看,其实还是没完全搞清楚,为啥这样离散化后可以与原来的等价。


AC代码:

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>

#define lchild left,mid,root<<1
#define rchild mid+1,right,root<<1|1

using namespace std;

const int maxn = 10010;
const int maxm = 1e7+10;
struct Point {
    int x,y;
}p[maxn];
int ans,N;
int num[maxn<<4];
int m[maxn<<4];
int lazy[maxn<<4];
int vis[maxm];
void push_down(int left,int right,int root) {
    if(lazy[root]) {
        lazy[root<<1] = lazy[root];
        lazy[root<<1|1] = lazy[root];
        lazy[root] = 0;
    }
}
void update(int L,int R,int color,int left,int right,int root) {
    if(L<=left && right<=R) {
        lazy[root] = color;
        return;
    }
    push_down(left,right,root);
    int mid = (left+right)>>1;
    if(L<=mid) update(L,R,color,lchild);
    if(R>mid) update(L,R,color,rchild);
}
void query(int left,int right,int root){
    if(lazy[root]) {
        if(vis[lazy[root]]==0) ans++;
        vis[lazy[root]] = 1;
        return;
    }
    if(left == right) return;
    int mid = (left+right)>>1;
    query(lchild);
    query(rchild);
}
int binarySearch(int len,int x) {
    int L,R,mid;
    L = 1;
    R = len;
    while(L<=R) {
        mid = (L+R)>>1;
        if(m[mid]==x)
            return mid;
        if(m[mid]>x) {
            R = mid-1;
        } else {
            L = mid+1;
        }
    }
    return -1;
}
int main() {
    int T;
    scanf("%d",&T);
    while(T--) {
        scanf("%d",&N);
        int cnt = 0;
        memset(vis,0,sizeof(vis));
        for(int i = 1; i <= N; i++) {
            scanf("%d%d",&p[i].x,&p[i].y);
            if(vis[p[i].x] == 0) {
                num[cnt++] = p[i].x;
                vis[p[i].x] = 1;
            }
            if(vis[p[i].y] == 0) {
                num[cnt++] = p[i].y;
                vis[p[i].y] = 1;
            }
        }
        memset(lazy,0,sizeof(lazy));
        memset(vis,0,sizeof(vis));
        sort(num,num+cnt);
        int newcnt = 0;
        m[++newcnt] = num[0];
        for(int i = 1; i < cnt; i++) {
            if(num[i]-num[i-1]>1) {
                m[++newcnt] = num[i-1]+1;
            }
            m[++newcnt] = num[i];
        }
        ans = 0;
        for(int i = 1; i <= N; i++) {
            int L,R;
            L = binarySearch(newcnt,p[i].x);
            R = binarySearch(newcnt,p[i].y);
            update(L,R,i,1,newcnt,1);
        }
        query(1,newcnt,1);
        printf("%d\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值