K近邻(K-Nearest Neighbor, KNN)是一种基本的分类与回归算法。其基本思想是将新的数据样本与已知类别的数据样本进行比较,根据K个最相似的已知样本的类别进行预测。
具体来说,KNN算法通过计算待分类样本与已知样本之间的距离(欧式距离、曼哈顿距离等),选取距离待分类样本最近的K个已知样本,再通过对这K个已知样本的类别进行投票、取平均等方式确定待分类样本的类别。KNN算法中,K的取值是一个重要的超参数,不同的取值可能会影响算法的性能。
优点:
简单易懂:KNN算法的原理简单,易于理解和实现。
无需训练:KNN算法是一种基于实例的学习方法,它不需要显式地训练模型,而是直接使用训练集中的实例进行预测。
适用于多分类问题:KNN算法可以应用于多分类问题,不需要额外的处理。
对异常值不敏感:KNN算法不受异常值的影响,因为它是基于相邻的投票决定结果,不会受到单个数据点的影响。
模型可解释性高:KNN算法的结果可以被解释为离查询点最近的邻居的平均值或众数。
缺点:
需要大量内存:KNN算法需要存储所有的训练样本,因此随着样本数量的增加,内存开销也会相应增加。
计算量大:对于每个测试样本,KNN算法需要计算它与所有训练样本之间的距离,因此随着样本数量的增加,计算量也会相应增加。
效果受参数K的影响:KNN算法中的K值是一个重要参数,需要根据实际问题进行选择,K值过大或过小都会影响预测结果。
受特征空间的影响:KNN算法的效果受特征空间的影响,如果特征空间维度过高,会影响算法的准确性。
对于不平衡数据集的处理效果较差:如果训练集中的某个类别的数据样本比其他类别的数据样本数量少,那么KNN算法会偏向于选择数量较多的类别进行预测,从而影响预测结果的准确性。
1.2 K近邻的应用
应用相对广泛:
图像识别:KNN算法可以用于图像识别领域,例如面部识别、手写数字识别等。
推荐系统:KNN算法可以用于基于用户行为和喜好的推荐系统,例如在线商店和社交媒体平台。
金融领域:KNN算法可以用于信用评分和风险管理,例如预测客户违约概率和市场波动。
医疗诊断:KNN算法可以用于医疗诊断,例如预测病人患某种疾病的可能性。
文本分类:KNN算法可以用于文本分类领域,例如垃圾邮件过滤、情感分析等。
时间序列预测:KNN算法可以用于时间序列预测,例如股票价格预测和气象预测。
其他领域:KNN算法还可以用于语音识别、游戏AI、生物信息学、物流和交通等领域。
提一下,单是生信领域使用的场景其实还是挺多的
基因分类:KNN可以用于对基因进行分类,例如在癌症研究中,可以使用KNN分类器来识别患有癌症的患者和健康人之间的基因表达模式的差异。
蛋白质结构预测:KNN可以用于预测蛋白质的三维结构,例如使用KNN回归来预测残基-残基相互作用的能量。
突变预测:KNN可以用于预测基因突变的影响,例如在基因组学中,可以使用KNN分类器来预测某种突变对蛋白质功能的影响。
数据集分类:KNN也可以用于分类未知数据集中的样本,例如在微生物组学中,可以使用KNN分类器来对未知的微生物样本进行分类。
基因表达数据分析:KNN可以用于分析基因表达数据,例如在单细胞RNA测序中,可以使用KNN来对细胞进行分类和聚类。