第十二周项目4——圆,点的关系(两个交点的坐标)

(6)与圆心相连的直线:给定一点p,其与圆心相连成的直线,会和圆有两个交点,如图。在上面定义的Point(点)类和Circle(圆)类基础上,设计一种方案,输出这两点的坐标。
提示:

代码如下:
#include <iostream>
#include <Cmath>
using namespace std;
class Circle;
class Point
{
protected:
    double x,y;
public:
    Point(int xx=0,int yy=0):x(xx),y(yy) {}
    friend ostream& operator<<(ostream&output,const Point &c);
    friend void Point_intersection(Point &p,Circle &c,Point &p1,Point &p2); //求交点的友元函数
};
ostream& operator<<(ostream &output,const Point &c)
{
    output<<"("<<c.x<<","<<c.y<<")"<<endl;
    return output;
}

class Circle:public Point
{
protected:
    double r;
public:
    Circle(int xx=0,int yy=0,double rr=0):Point(xx,yy),r(rr){};
    friend ostream& operator<<(ostream&output,const Circle &c);
    friend void Point_intersection(Point &p,Circle &c,Point &p1,Point &p2); //求交点的友元函数
};
ostream& operator<<(ostream&output,const Circle &c)
{
    output<<"("<<c.x<<","<<c.y<<","<<c.r<<")"<<endl;
    return output;
}
void Point_intersection(Point &p,Circle &c,Point &p1,Point &p2)
{
     p1.x=c.x+sqrt((c.r*c.r)/(1+((c.y-p.y)/(c.x-p.x)*(c.y-p.y)/(c.x-p.x))));
     p2.x=c.x-sqrt((c.r*c.r)/(1+((c.y-p.y)/(c.x-p.x)*(c.y-p.y)/(c.x-p.x))));
     p1.y=((c.y-p.y)/(c.x-p.x))*(p1.x-p.x)+p.y;
     p2.y=((c.y-p.y)/(c.x-p.x))*(p2.x-p.x)+p.y;
}

int main( )
{
    Circle c(3,2,4);
    Point p(10,10),p1,p2;
    Point_intersection(p,c,p1,p2);
    cout<<"点p"<<p<<"与圆c"<<c<<"的圆心确定的一条直线与圆的两个交点:"<<endl;
    cout<<"交点1: "<<p1<<endl;
    cout<<"交点2: "<<p2<<endl;
    return 0;
}

总结:
没有公式真心算不出来
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值