hdu 4549 M斐波那契数列 (矩阵快速幂)

题目链接

题意及做法很简单,但是答案会溢出,看了看网上大佬们的题解,发现这么个东西,学到了

费马小定理:

若p是素数,gcd(a,p)=1,则a^(p-1)1(mod p)。

若a^b mod p 中b很大,则可以简化为a^b mod p=a^[b mod (p-1)] mod p

证明如下:

b=t*(p-1)+r,其中r为b除以(p-1)的余数,即为b mod (p-1)。

a^b=(a^(p-1))^t * a^r  1^t * a^r  a^r (mod p)

费马小定理的推广:如果p为质数,xp-x(x是任意正整数)必能被p整除

 

注意是对b,对结果分别是取模(p-1),取模p;不要同时取模p或同时取模(p-1)!

f(n)是斐波那契数列的第n项
F(n) = a^f(n-1)*b^f(n)
然后由费马小定理
 a^f(n-1) = a^(f(n-1)%1000000006) (mod 1000000007)
b^f(n) = b^(f(n)%1000000006) (mod 1000000007)
这2个直接快速幂就行了
f(n)%1000000006这个用矩阵快速幂可以求然后答案就出来了

#include<bits/stdc++.h>
using namespace std;
const int maxn=3000+5;
const int mod=1e9+7;
typedef long long ll;
ll a,b,n;
struct matrix
{
	ll a[2][2];
	matrix (){memset(a,0,sizeof(a));}
	matrix operator *(const matrix &b)const
	{
		matrix res;
		for(int i=0;i<2;i++)
			for(int j=0;j<2;j++)
				for(int k=0;k<2;k++)
					res.a[i][j]=(res.a[i][j]+a[i][k]*b.a[k][j])%(mod-1);
		return res;
	}
}ans,base;

void init()
{
	base.a[1][1]=base.a[0][1]=base.a[1][0]=1;
	ans.a[1][1]=ans.a[0][0]=1;
}
void qpow(int b)
{
	while(b)
	{
		if(b&1)ans=ans*base;
		base=base*base;
		b>>=1;
	}
}

ll fpow(ll a,ll b)
{
	ll ans=1;
	while(b)
	{
		if(b&1)ans=(ans*a)%mod;
		a=(a*a)%mod;
		b>>=1;
	}
	return ans;
}
int main(int argc, char const *argv[])
{
	while(scanf("%lld%lld%lld",&a,&b,&n)!=EOF)
	{
		memset(base.a,0,sizeof(base.a));
		memset(ans.a,0,sizeof(ans.a));
		if(n==0){printf("%lld\n",a);continue;}
		if(n==1){printf("%lld\n",b);continue;}
		init();
		qpow(n);
		ll res=(fpow(a,ans.a[0][0])*fpow(b,ans.a[0][1])%mod);
		printf("%lld\n",res);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值