Numerical Analysis - Integration - Basics

数值积分的代数精度

定义

我们探讨如下形式的求积公式

Definition 1:
用已知节点的线性组合来代表积分值的形式写出求积公式

baρ(x)f(x)dxIn(f)=k=0nAkf(xk)

其中 Ak 成为求积系数。

数值积分的误差如下表示:

Definition 2:
误差用真值和求积公式的差表示

En(f)=baρ(x)f(x)dxk=0nAkf(xk)

其中,已经知道的信息是区间 [a,b] 内的 n+1 个求积节点。

Definition 3:
1. 我们说一个数值积分格式至少有 k 次代数精度,就是说,En(xm)=0对于 m=0,1,2,...,k 均成立。
2. 我们说一个数值积分格式恰有 k 次代数精度,就是说,该格式至少有k次代数精度且 En(xk+1)0

插值型求积公式

对插值节点做n次Lagrange插值,有

Ln(x)=k=0nf(xk)j=0,jkn(xxjxkxj)=k=0nf(xk)lk(x),k=0,1,...,n

于是,有
f(x)=Ln(x)+Rn(x)


baρ(x)f(x)dx=baρ(x)Ln(x)dx+baρ(x)Rn(x)dx=k=0nf(xk)baρ(x)lk(x)dx+baρ(x)Rn(x)dx

Definition 4:
我们称求积系数满足
Ak=baρ(x)lk(x)dx

的求积公式为插值型求积公式。

对插值型求积公式而言,误差为:

E(x)=baρ(x)Rn(x)dx=baρ(x)f(n+1)(ξ(x))ωn+1(x)(n+1)!dx

显然,该插值公式具有至少n次的代数精度。

事实上,具有n次代数精度的求积公式(已知n+1个节点)都是插值型的求积公式。
这是因为 lk(x) 显然是n阶多项式。这意味着 En(lk(x))=0 恒成立。
故有

baρ(x)lk(x)dx=j=0nAjlk(xj)=Ak

于是,我们以断言这是一个插值型的积分公式。

收敛性与稳定性

Definition 5:(收敛性)
在求积公式中,设 ax0<x1<...<xnb ,如果令 h=max1kn 如果有

limh0k=0nAkf(xk)=baρ(x)f(x)dx

一般来说,计算函数值f(x_l)以及其求和都有可能带来舍入误差,因此计实际计算值为

f˜(xk)=f(xk)+δk

I˜n(f)=k=0nAkf˜(xk)

稳定性定义的初衷是希望当 δk<δ 时,有 I˜n(f)In(f)<ϵ 成立

Difinition 6: (稳定性)
ϵ>0,δ>0,s.t.δk<δ,(k=0,1,...,n),I˜n(f)In(f)<ϵ

Definition 7: (相容性)

k=0nAk=baρ(x)dx

关于稳定性和相容性,有如下定理
Theorem 1:
如果某求积公式是相容的,并且它的每一个求积系数都大于零,则它是稳定的。
证明:

ϵ>0,δ=ϵ/(k=0nAk)

I˜n(f)In(f)<k=0nAkδk<(k=0nAk)δ=ϵ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值