数值积分的代数精度
定义
我们探讨如下形式的求积公式
Definition 1:
用已知节点的线性组合来代表积分值的形式写出求积公式
其中 Ak 成为求积系数。
数值积分的误差如下表示:
Definition 2:
误差用真值和求积公式的差表示
其中,已经知道的信息是区间 [a,b] 内的 n+1 个求积节点。
Definition 3:
1. 我们说一个数值积分格式至少有
k
次代数精度,就是说,
2. 我们说一个数值积分格式恰有
k
次代数精度,就是说,该格式至少有
插值型求积公式
对插值节点做n次Lagrange插值,有
于是,有
则
Definition 4:
我们称求积系数满足
的求积公式为插值型求积公式。
对插值型求积公式而言,误差为:
显然,该插值公式具有至少n次的代数精度。
事实上,具有n次代数精度的求积公式(已知n+1个节点)都是插值型的求积公式。
这是因为
lk(x)
显然是n阶多项式。这意味着
En(lk(x))=0
恒成立。
故有
于是,我们以断言这是一个插值型的积分公式。
收敛性与稳定性
Definition 5:(收敛性)
在求积公式中,设
a≤x0<x1<...<xn≤b
,如果令
h=max1≤k≤n
如果有
一般来说,计算函数值f(x_l)以及其求和都有可能带来舍入误差,因此计实际计算值为
稳定性定义的初衷是希望当 ∣δk∣<δ 时,有 ∣I˜n(f)−In(f)∣<ϵ 成立
Difinition 6: (稳定性)
∀ϵ>0,∃δ>0,s.t.∣δk∣<δ,(k=0,1,...,n),∣I˜n(f)−In(f)∣<ϵ
Definition 7: (相容性)
关于稳定性和相容性,有如下定理
Theorem 1:
如果某求积公式是相容的,并且它的每一个求积系数都大于零,则它是稳定的。
证明: