陈强《计量经济学及Stata应用》学习笔记——持续更新

1 导论

1.1 什么是计量经济学econometrics

几种关系:

相关关系、因果关系、逆向因果关系reverse causality、双向因果关系

被解释变量dependent variable

解释变量explanatory variable=regressor=自变量independent variable=协变量covariate

unobservable的误差项error term=随机扰动项stochastic disturbance

控制变量control variables

遗漏变量omitted variables

1.2 经济数据的特点与类型

控制实验controlled experiment

实验数据experimental data

观测数据observational data

横截面数据cross-sectional data=截面数据

时间序列数据time series data

面板数据panel data

2 Stata入门

3 数学回顾

注:此章笔记中我省略了一些我觉得太简单的概念

3.1 微积分

二阶导数second derivative=曲率curvature

最优化问题optimization:

最小化问题minimization:如最小二乘法

最大化问题maximization:如MLE

一阶条件first order condition

二阶条件second order condition

偏导数partial derivative

边际效用marginal utility

边际产出marginal output

定积分definite integral

3.2 线性代数

内积inner product=点乘dot product

可逆矩阵invertible matrix=非退化矩阵nonsingular matrix

欧几里得距离Euclidean distance

3.3 概率论与条件概率

3.4 分布与条件分布

3.5 随机变量的数字特征

### 关于陈强《高级计量经济学Stata应用》复习建议 为了有效复习陈强所著的《高级计量经济学Stata应用》,可以从以下几个方面入手: #### 1. 掌握ADL模型的应用 自回归分布滞后(ADL)模型是一种重要的动态模型,在实证研究中有广泛应用。理解如何构建和解释这类模型至关重要[^1]。 ```stata // 构建一个简单的ADL(p,q)模型实例 regress y L(1/2).y L(0/3).x ``` 这段代码展示了如何在Stata中实现一个含有两个滞后期因变量和三个前定时期的外生变量的ADL模型估计过程。 #### 2. 数据类型的区分与处理 熟悉不同类型的数据集——横截面数据、时间序列数据和平板数据的特点及其相应的分析方法非常重要。这有助于选择合适的技术来解决问题并提高效率[^2]。 - **时间序列数据**适合追踪单个实体随时间变化的趋势; - **面板数据**则综合了上述两种特性,能够提供更丰富的信息结构。 #### 3. 利用辅助资源深化学习效果 除了原著本身之外,还可以借助其他优质的学习材料加深理解和实践能力。例如,《Python数据分析教程》不仅涵盖了广泛的主题,而且特别强调了实际案例的操作指导,这对于希望提升编程技巧的人来说非常有帮助[^4]。 尽管该书主要围绕Python展开讨论,但对于想要进一步探索统计软件之间差异的人而言,了解多种工具的工作方式可以拓宽视野,促进跨平台思维的发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值