题目1:
分析:已知的两个中点连起来起不到任何作用,并且跟已知条件AD=BC起不到任何关联,所以中点M和N注定是要分开使用的,看到中点找中点,在哪里找另一个中点,构造辅助中位线呢?我们可以试一下AD和BC的边,发现无法利用AD=BC的条件,这就告诉我们,在已有的线段上找中点是死胡同,赶快换个思路吧!我们来自己创造一条能取中点的边,比如ABCD的对角线AC,取AC的中点G,再连接GM和GN,在△ABC 中,中位线GM刚好是BC的一半,△ACD中,中位线GN刚好是AD的一半。
证明:连接AC,作GN∥AD交AC于G,连接MG.
∵N是CD的中点,且NG∥AD,
∴NG=
1 |
2 |
又∵M是AB的中点,
∴MG ∥ BC,且MG=
1 |
2 |
∵AD=BC
∴NG=GM
△GNM为等腰三角形
∴∠GNM=∠GMN
∵GM ∥ BF平行于(中位线平行于第三边的性质)
∴∠GMF=∠F
∵GN ∥ AD
∴∠GNM=∠DEN
∴∠DEN=∠F.

总结:难点就在如何找辅助线(中位线)看到中点找中点,找到对应辅助线
题目2:
如图,等腰△ABC中,AB=AC,∠BAC=90°,BE平分∠BAC交AC于E,过C作CD⊥BE于D,连接AD,求证:(1)∠ADB=45°;(2)BE=2CD.
分析:由于BD既是高又是角平分线,由三线合一,很容易想到如果把BA、CD延长交于Q,就能构造出等腰三角形BCQ,再根据三线合一就知道BD也是中线,所以CQ=2CD,这样就把CD的两倍做出来了,接下来你就要证明CQ=BE了,观察图像,寻找CQ和BE所在的三角形,也就是证明三角形△ABE≌△ACQ
证明:
解答:证明:(1)∵CD⊥BE,∠BAC=90°
∴A、B、C、D四点共圆
∴∠ADB=∠ACB
∵等腰△ABC中,AB=AC,∠BAC=90°
∴∠ACB=∠ABC=45°
∴∠ADB=45°;
(2)
延长BA和CD交于Q
∵∠CAQ=∠BAE=∠BDC=90°
∴∠ACQ+∠Q=90°,∠ABE+∠Q=90°
∴∠ACQ=∠ABE
【在△ABE和△CDE中,因为∠DEC=∠AEB(对顶角相等)也能得出∠ACQ=∠ABE】
在△ABE和△ACQ中
∠ABE=∠ACQ
AB=AC
∠BAE=∠CAQ
∴△ABE≌△ACQ(相似三角形的定义)
∴BE=CQ,
∵BD平分∠ABC
∴∠QBD=∠CBD
∵∠BDC=90°
∴∠BDC=∠BDQ=90°
在△QDB和△CDB中
∠QBD=∠CBD
BD=BD
∠BDQ=∠BDC
∴△QDB≌△CDB(相似三角形的定义)
∴CD=DQ
∴CQ=2CD
∴BE=2CD
题目3:
如图,在等边△ABC的边BC上任取一点D,作∠ADE=60°,DE交∠C的外角平分线于E,则证明△ADE是等边三角形.

∴△BDP为等边三角形,BD=BP
∴AP=CD
∵∠BPD为△ADP的外角
∴∠ADP+∠DAP=∠BPD=60°
而∠ADP+∠EDC=180°-∠BDP-∠ADE=60°
∴∠ADP+∠DAP=∠ADP+∠EDC=60°
∴∠DAP=∠EDC( 外角三角形定理得出 )
在△ADP和△DEC中,
∵
|
∴△ADP≌△DEC(全等三角形)
∴AD=DE
∵∠ADE=60°
∴△ADE是等边三角形
