常用机器学习常用算法优点及缺点总结

决策树
一、 决策树优点1、决策树易于理解和解释,可以可视化分析,容易提取出规则。2、可以同时处理标称型和数值型数据。3、测试数据集时,运行速度比较快。4、决策树可以很好的扩展到大型数据库中,同时它的大小独立于数据库大小。
二、决策树缺点1、对缺失数据处理比较困难。2、容易出现过拟合问题。3、忽略数据集中属性的相互关联。4、ID3算法计算信息增益时结果偏向数值比较多的特征。
三、改进措施1、对决策树进行剪枝。可以采用交叉验证法和加入正则化的方法。2、使用基于决策树的combination算法,如bagging算法,randomforest算法,可以解决过拟合的问题三、应用领域企业管理实践,企业投资决策,由于决策树很好的分析能力,在决策过程应用较多。

KNN算法
一、KNN算法的优点1、KNN是一种在线技术,新数据可以直接加入数据集而不必进行重新训练2、KNN理论简单,容易实现
二、KNN算法的缺点1、对于样本容量大的数据集计算量比较大。2、样本不平衡时,预测偏差比较大。如:某一类的样本比较少,而其它类样本比较多。3、KNN每一次分类都会重新进行一次全局运算。4、k值大小的选择。
三、KNN算法应用领域文本分类、模式识别、聚类分析,多分类领域支持向量机

(SVM)
一、 SVM优点
1、解决小样本下机器学习问题。2、解决非线性问题。3、无局部极小值问题。(相对于神经网络等算法)4、可以很好的处理高维数据集。5、泛化能力比较强。
二、SVM缺点1
、对于核函数的高维映射解释力不强,尤其是径向基函数。2、对缺失数据敏感。
三、SVM应用领域文本分类、图像识别、主要二分类领域

AdaBoost算法
一、 AdaBoost算法优点
1、很好的利用了弱分类器进行级联。2、可以将不同的分类算法作为弱分类器。3、AdaBoost具有很高的精度。4、相对于bagging算法和Random Forest算法,AdaBoost充分考虑的每个分类器的权重。
二、Adaboost算法缺点
1、AdaBoost迭代次数也就是弱分类器数目不太好设定,可以使用交叉验证来进行确定。2、数据不平衡导致分类精度下降。3、训练比较耗时,每次重新选择当前分类器最好切分点。
三、AdaBoost应用领域
模式识别、计算机视觉领域,用于二分类和多分类场景

朴素贝叶斯算法
一、 朴素贝叶斯算法优点
1、对大数量训练和查询时具有较高的速度。即使使用超大规模的训练集,针对每个项目通常也只会有相对较少的特征数,并且对项目的训练和分类也仅仅是特征概率的数学运算而已。2、支持增量式运算。即可以实时的对新增的样本进行训练。3、朴素贝叶斯对结果解释容易理解。
二、朴素贝叶斯缺点
1、由于使用了样本属性独立性的假设,所以如果样本属性有关联时其效果不好。
三、朴素贝叶斯应用领域
文本分类、欺诈检测中使用较多

Logistic回归算法
一、logistic回归优点
1、计算代价不高,易于理解和实现
二、logistic回归缺点
1、容易产生欠拟合。2、分类精度不高。
三、logistic回归应用领域
用于二分类领域,可以得出概率值,适用于根据分类概率排名的领域,如搜索排名等。Logistic回归的扩展softmax可以应用于多分类领域,如手写字识别等。

人工神经网络
一、 神经网络优点
1、分类准确度高,学习能力极强。2、对噪声数据鲁棒性和容错性较强。3、有联想能力,能逼近任意非线性关系。
二、神经网络缺点
1、神经网络参数较多,权值和阈值。2、黑盒过程,不能观察中间结果。3、学习过程比较长,有可能陷入局部极小值。
三、人工神经网络应用领域
目前深度神经网络已经应用与计算机视觉,自然语言处理,语音识别等领域并取得很好的效果。 ===============================================================================================原文:http://suanfazu.com/t/qian-tan-wo-dui-ji-qi-xue-xi-de-dian-li-jie/305机器学习方法非常多,也很成熟。下面我挑几个说。
首先是SVM。
因为我做的文本处理比较多,所以比较熟悉SVM。SVM也叫支持向量机,其把数据映射到多维空间中以点的形式存在,然后找到能够分类的最优超平面,最后根据这个平面来分类。SVM能对训练集之外的数据做很好的预测、泛化错误率低、计算开销小、结果易解释,但其对参数调节和核函数的参数过于敏感。个人感觉SVM是二分类的最好的方法,但也仅限于二分类。如果要使用SVM进行多分类,也是在向量空间中实现多次二分类。
SVM有一个核心函数SMO,也就是序列最小最优化算法。SMO基本是最快的二次规划优化算法,其核心就是找到最优参数α,计算超平面后进行分类。SMO方法可以将大优化问题分解为多个小优化问题求解,大大简化求解过程。某些条件下,把原始的约束问题通过拉格朗日函数转化为无约束问题,如果原始问题求解棘手,在满足KKT的条件下用求解对偶问题来代替求解原始问题,使得问题求解更加容易。 SVM还有一个重要函数是核函数。核函数的主要作用是将数据从低位空间映射到高维空间。详细的内容我就不说了,因为内容实在太多了。总之,核函数可以很好的解决数据的非线性问题,而无需考虑映射过程。

第二个是KNN。
KNN将测试集的数据特征与训练集的数据进行特征比较,然后算法提取样本集中特征最近邻数据的分类标签,即KNN算法采用测量不同特征值之间的距离的方法进行分类。KNN的思路很简单,就是计算测试数据与类别中心的距离。KNN具有精度高、对异常值不敏感、无数据输入假定、简单有效的特点,但其缺点也很明显,计算复杂度太高。要分类一个数据,却要计算所有数据,这在大数据的环境下是很可怕的事情。而且,当类别存在范围重叠时,KNN分类的精度也不太高。所以,KNN比较适合小量数据且精度要求不高的数据。
KNN有两个影响分类结果较大的函数,一个是数据归一化,一个是距离计算。如果数据不进行归一化,当多个特征的值域差别很大的时候,最终结果就会受到较大影响;第二个是距离计算。这应该算是KNN的核心了。目前用的最多的距离计算公式是欧几里得距离,也就是我们常用的向量距离计算方法。
个人感觉,KNN最大的作用是可以随时间序列计算,即样本不能一次性获取只能随着时间一个一个得到的时候,KNN能发挥它的价值。至于其他的特点,它能做的,很多方法都能做;其他能做的它却做不了。

第三个就是Naive Bayes了。
Naive Bayes简称NB(牛X),为啥它牛X呢,因为它是基于Bayes概率的一种分类方法。贝叶斯方法可以追溯到几百年前,具有深厚的概率学基础,可信度非常高。Naive Baye中文名叫朴素贝叶斯,为啥叫“朴素”呢?因为其基于一个给定假设:给定目标值时属性之间相互条件独立。比如我说“我喜欢你”,该假设就会假定“我”、“喜欢”、“你”三者之间毫无关联。仔细想想,这几乎是不可能的。马克思告诉我们:事物之间是有联系的。同一个事物的属性之间就更有联系了。所以,单纯的使用NB算法效率并不高,大都是对该方法进行了一定的改进,以便适应数据的需求。
NB算法在文本分类中用的非常多,因为文本类别主要取决于关键词,基于词频的文本分类正中NB的下怀。但由于前面提到的假设,该方法对中文的分类效果不好,因为中文顾左右而言他的情况太多,但对直来直去的老美的语言,效果良好。至于核心算法嘛,主要思想全在贝叶斯里面了,没啥可说的。

第四个是回归。
回归有很多,Logistic回归啊、岭回归啊什么的,根据不同的需求可以分出很多种。这里我主要说说Logistic回归。为啥呢?因为Logistic回归主要是用来分类的,而非预测。回归就是将一些数据点用一条直线对这些点进行拟合。而Logistic回归是指根据现有数据对分类边界线建立回归公式,以此进行分类。该方法计算代价不高,易于理解和实现,而且大部分时间用于训练,训练完成后分类很快;但它容易欠拟合,分类精度也不高。主要原因就是Logistic主要是线性拟合,但现实中很多事物都不满足线性的。即便有二次拟合、三次拟合等曲线拟合,也只能满足小部分数据,而无法适应绝大多数数据,所以回归方法本身就具有局限性。但为什么还要在这里提出来呢?因为回归方法虽然大多数都不合适,但一旦合适,效果就非常好。
Logistic回归其实是基于一种曲线的,“线”这种连续的表示方法有一个很大的问题,就是在表示跳变数据时会产生“阶跃”的现象,说白了就是很难表示数据的突然转折。所以用Logistic回归必须使用一个称为“海维塞德阶跃函数”的Sigmoid函数来表示跳变。通过Sigmoid就可以得到分类的结果。
为了优化Logistic回归参数,需要使用一种“梯度上升法”的优化方法。该方法的核心是,只要沿着函数的梯度方向搜寻,就可以找到函数的最佳参数。但该方法在每次更新回归系数时都需要遍历整个数据集,对于大数据效果还不理想。所以还需要一个“随机梯度上升算法”对其进行改进。该方法一次仅用一个样本点来更新回归系数,所以效率要高得多。

第五个是决策树。
据我了解,决策树是最简单,也是曾经最常用的分类方法了。决策树基于树理论实现数据分类,个人感觉就是数据结构中的B+树。决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。决策树计算复杂度不高、输出结果易于理解、对中间值缺失不敏感、可以处理不相关特征数据。其比KNN好的是可以了解数据的内在含义。但其缺点是容易产生过度匹配的问题,且构建很耗时。决策树还有一个问题就是,如果不绘制树结构,分类细节很难明白。所以,生成决策树,然后再绘制决策树,最后再分类,才能更好的了解数据的分类过程。
决策树的核心树的分裂。到底该选择什么来决定树的分叉是决策树构建的基础。最好的方法是利用信息熵实现。熵这个概念很头疼,很容易让人迷糊,简单来说就是信息的复杂程度。信息越多,熵越高。所以决策树的核心是通过计算信息熵划分数据集。

我还得说一个比较特殊的分类方法:AdaBoost。
AdaBoost是boosting算法的代表分类器。boosting基于元算法(集成算法)。即考虑其他方法的结果作为参考意见,也就是对其他算法进行组合的一种方式。说白了,就是在一个数据集上的随机数据使用一个分类训练多次,每次对分类正确的数据赋权值较小,同时增大分类错误的数据的权重,如此反复迭代,直到达到所需的要求。AdaBoost泛化错误率低、易编码、可以应用在大部分分类器上、无参数调整,但对离群点敏感。该方法其实并不是一个独立的方法,而是必须基于元方法进行效率提升。
个人认为,所谓的“AdaBoost是最好的分类方法”这句话是错误的,应该是“AdaBoost是比较好的优化方法”才对。

总的来说,机器学习方法是利用现有数据作为经验让机器学习,以便指导以后再次碰到的决策。目前来说,对于大数据分类,还是要借助分布式处理技术和云技术才有可能完成,但一旦训练成功,分类的效率还是很可观的,这就好比人年龄越大看待问题越精准的道理是一样的。
这八个月里,从最初的理解到一步步实现;从需求的逻辑推断到实现的方法选择,每天都是辛苦的,但每天也都是紧张刺激的。我每天都在想学了这个以后可以实现什么样的分类,其实想想都是让人兴奋的。
数据分析得到我想象不到的事情,这不仅满足了我的好奇感,也让我能在工作中乐在其中。也许,我距离社会的技术需求还有很远的距离,但我对自己充满信心,因为,我不感到枯燥,不感到彷徨,虽然有些力不从心,但态度坚定。

===================================================
简述机器学习十大算法的每个算法的核心思想、工作原理、适用情况及优缺点等。

  1. C4.5算法:ID3算法是以信息论为基础,以信息熵和信息增益度为衡量标准,从而实现对数据的归纳分类。ID3算法计算每个属性的信息增益,并选取具有最高增益的属性作为给定的测试属性。C4.5算法核心思想是ID3算法,是ID3算法的改进,改进方面有:
    1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;
    2)在树构造过程中进行剪枝
    3)能处理非离散的数据
    4)能处理不完整的数据
    C4.5算法优点:
    产生的分类规则易于理解,准确率较高。
    缺点:
    1)在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。
    2)C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。

  2. K means 算法:是一个简单的聚类算法,把n的对象根据他们的属性分为k个分割,k< n。 算法的核心就是要优化失真函数J,使其收敛到局部最小值但不是全局最小值。其中N为样本数,K是簇数,rnk b表示n属于第k个簇,uk 是第k个中心点的值。然后求出最优的uk优点:算法速度很快缺点是,分组的数目k是一个输入参数,不合适的k可能返回较差的结果。

  3. 朴素贝叶斯算法:朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。算法的基础是概率问题,分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。朴素贝叶斯假设是约束性很强的假设,假设特征条件独立,但朴素贝叶斯算法简单,快速,具有较小的出错率。在朴素贝叶斯的应用中,主要研究了电子邮件过滤以及文本分类研究。

  4. K最近邻分类算法(KNN)分类思想比较简单,从训练样本中找出K个与其最相近的样本,然后看这k个样本中哪个类别的样本多,则待判定的值(或说抽样)就属于这个类别。缺点:1)K值需要预先设定,而不能自适应2)当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。该算法适用于对样本容量比较大的类域进行自动分类。

  5. EM最大期望算法EM算法是基于模型的聚类方法,是在概率模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量。E步估计隐含变量,M步估计其他参数,交替将极值推向最大。EM算法比K-means算法计算复杂,收敛也较慢,不适于大规模数据集和高维数据,但比K-means算法计算结果稳定、准确。EM经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。

  6. PageRank算法是google的页面排序算法,是基于从许多优质的网页链接过来的网页,必定还是优质网页的回归关系,来判定所有网页的重要性。(也就是说,一个人有着越多牛X朋友的人,他是牛X的概率就越大。)优点:完全独立于查询,只依赖于网页链接结构,可以离线计算。缺点:1)PageRank算法忽略了网页搜索的时效性。2)旧网页排序很高,存在时间长,积累了大量的in-links,拥有最新资讯的新网页排名却很低,因为它们几乎没有in-links.

  7. AdaBoostAdaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。整个过程如下所示:
    先通过对N个训练样本的学习得到第一个弱分类器;
    将分错的样本和其他的新数据一起构成一个新的N个的训练样本,通过对这个样本的学习得到第二个弱分类器;
    将和都分错了的样本加上其他的新样本构成另一个新的N个的训练样本,通过对这个样本的学习得到第三个弱分类器;
    如此反复,最终得到经过提升的强分类器。目前AdaBoost算法广泛的应用于人脸检测、目标识别等领域。

  8. Apriori算法Apriori算法是一种挖掘关联规则的算法,用于挖掘其内含的、未知的却又实际存在的数据关系,其核心是基于两阶段频集思想的递推算法 。Apriori算法分为两个阶段:1)寻找频繁项集2)由频繁项集找关联规则算法缺点:1) 在每一步产生侯选项目集时循环产生的组合过多,没有排除不应该参与组合的元素;2) 每次计算项集的支持度时,都对数据库中 的全部记录进行了一遍扫描比较,需要很大的I/O负载。

  9. SVM支持向量机支持向量机是一种基于分类边界的方法。
    SVM在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 对于多维数据(如N维),可以将它们视为N维空间中的点,而分类边界就是N维空间中的面,称为超面(超面比N维空间少一维)。
    线性分类器使用超平面类型的边界,非线性分类器使用超曲面。
    支持向量机的原理是将低维空间的点映射到高维空间,使它们成为线性可分,再使用线性划分的原理来判断分类边界。
    在高维空间中是一种线性划分,而在原有的数据空间中,是一种非线性划分。SVM在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。

  10. CART分类与回归树是一种决策树分类方法,采用基于最小距离的基尼指数估计函数,用来决定由该子数据集生成的决策树的拓展形。如果目标变量是标称的,称为分类树;如果目标变量是连续的,称为回归树。分类树是使用树结构算法将数据分成离散类的方法。
    优点:
    1)非常灵活,可以允许有部分错分成本,还可指定先验概率分布,可使用自动的成本复杂性剪枝来得到归纳性更强的树。
    2)在面对诸如存在缺失值、变量数多等问题时CART 显得非常稳健。。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值