来一场栈的大模拟(主要是单调栈)

一.栈模拟

二.单调栈求最大矩形面积 

 

通常,直方图用于表示离散分布,例如,文本中字符的频率。

现在,请你计算在公共基线处对齐的直方图中最大矩形的面积。

图例右图显示了所描绘直方图的最大对齐矩形。

输入格式

输入包含几个测试用例。

每个测试用例占据一行,用以描述一个直方图,并以整数 n 开始,表示组成直方图的矩形数目。

然后跟随 n 个整数 h1,…,hn。

这些数字以从左到右的顺序表示直方图的各个矩形的高度。

每个矩形的宽度为 1。

同行数字用空格隔开。

当输入用例为 n=0 时,结束输入,且该用例不用考虑。

输出格式

对于每一个测试用例,输出一个整数,代表指定直方图中最大矩形的区域面积。

每个数据占一行。

请注意,此矩形必须在公共基线处对齐。

数据范围

1≤n≤100000
0≤hi≤1000000000

输入样例:

7 2 1 4 5 1 3 3

4 1000 1000 1000 1000

0

输出样例:

8

4000

思考:这个题为什么可以用单调栈呢:

例如:栈中有1,4,6而这时来了一个3,你会发现有1和将要插入的3的时候这个4,6是用不着的,这是4和6就可以出栈,这不就是一个单调递增的栈吗?

代码:

#include<iostream>
#include<algorithm>

using namespace std;

const int N = 100010;

//l[i], r[i]表示第i个矩形的高度可向两侧扩展的左右边界
int h[N], q[N], l[N], r[N];

typedef long long ll;

int main()
{
    int n;
    while(scanf("%d", &n), n)
    {
        for(int i = 1; i <= n; i ++)  scanf("%d", &h[i]);
        h[0] = h[n + 1] = -1;

        int tt = -1;
        q[++ tt] = 0;
        for(int i = 1; i <= n; i ++)
        {
            while(h[q[tt]] >= h[i])  tt --;
            l[i] = q[tt]+1;
            q[++ tt] = i;
        }

        tt = -1;
        q[++ tt] = n + 1;
        for(int i = n; i; i --)
        {
            while(h[q[tt]] >= h[i])  tt --;
            r[i] = q[tt]-1;
            q[++ tt] = i;
        }

        ll res = 0;
        for(int i = 1; i <= n; i ++)  res = max(res,(ll)h[i]*(r[i]-l[i]+1));
        printf("%lld\n", res);
    }
    return 0;
}

 

 

 

三.升级题

一.Maximal submatrix 

代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=5e3+7;
int mp[maxn][maxn];
int mark[maxn][maxn];
int h[maxn];
int q[maxn];
int l[maxn];
int r[maxn];
int n,m;
int solve(int h[]){
    h[0]=h[m+1]=-1;
    int tt=-1;
    q[++tt]=0;
    for(int i=1;i<=m;i++){
        while(h[q[tt]]>=h[i]) tt--;
        l[i]=q[tt]+1;
        q[++tt]=i;
    }
    tt=-1;
    q[++tt]=m+1;
    for(int i=m;i;i--){
        while(h[q[tt]]>=h[i]) tt--;
        r[i]=q[tt]-1;
        q[++tt]=i;
    }
    int res=0;
    for(int i=1;i<=m;i++){
        res=max(res,h[i]*(r[i]-l[i]+1));
    }
    return res;
}
int main(){
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    int t;
    cin>>t;
    while(t--){
        cin>>n>>m;
        for(int i=1;i<=n;i++){
            for(int j=1;j<=m;j++){
                cin>>mp[i][j];
            }
        }
        for(int j=1;j<=n;j++){
            mark[1][j]=1;
            for(int i=2;i<=n;i++){
                if(mp[i][j]>=mp[i-1][j]){
                    mark[i][j]=mark[i-1][j]+1;
                }else{
                    mark[i][j]=1;
                }
            }
        }
        int ans=0;
        for(int i=1;i<=n;i++){
            ans=max(ans,solve(mark[i]));
        }
        cout<<ans<<'\n';
    }
    system("pause");
    return 0;
}

二. 与上题类似

 这个题就是维护一个h[i][j]和l[i][j]和r[i][j],最后的答案就是max(h[i][j]*(r[i][j]-l[i][j]+1)),按上一道题做法也行。

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=1e3+100;
char s[maxn][maxn];
int a[maxn][maxn];
int up[maxn][maxn];
int l[maxn][maxn];
int r[maxn][maxn];
int q[maxn];
int main(){
    int n,m;
    cin>>n>>m;
    for (int i = 1; i <= n; i ++ ){
        for(int j=1;j<=m;j++){
            cin>>s[i][j];
            if(s[i][j]=='F'){
                a[i][j]=1;
            }
        }
    }
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            if(a[i][j]){
                up[i][j]=up[i-1][j]+1;
            }
            else{
                up[i][j]=0;
            }
        }
    }
    for(int i=1;i<=n;i++){
        int tt=-1;
        up[i][0]=up[i][m+1]=-1;
        q[++tt]=0;
        for(int j=1;j<=m;j++){//维护单调递增的栈
            while(up[i][j]<=up[i][q[tt]]) tt--;
            l[i][j]=q[tt]+1;
            q[++tt]=j;
        }
        tt=-1;
        q[++tt]=m+1;
        for(int j=m;j>=1;j--){
            while(up[i][q[tt]]>=up[i][j]) tt--;
            r[i][j]=q[tt]-1;
            q[++tt]=j;
        }
    }
    int ans=0;
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            //cout<<i<<" "<<j<<" "<<l[i][j]<<" "<<r[i][j]<<" "<<up[i][j]<<endl;
            ans=max(ans,(r[i][j]-l[i][j]+1)*up[i][j]);
        }
    }
    cout<<ans*3<<endl;
}

 三.移动列

给你一个二进制矩阵 matrix ,它的大小为 m x n ,你可以将 matrix 中的 列 按任意顺序重新排列。

请你返回最优方案下将 matrix 重新排列后,全是 1 的子矩阵面积。

 

示例1:

输入:matrix = [[0,0,1],[1,1,1],[1,0,1]]
输出:4
解释:你可以按照上图方式重新排列矩阵的每一列。
最大的全 1 子矩阵是上图中加粗的部分,面积为 4 。


示例 2:

输入:matrix = [[1,0,1,0,1]]
输出:3
解释:你可以按照上图方式重新排列矩阵的每一列。
最大的全 1 子矩阵是上图中加粗的部分,面积为 3 。


示例 3:

输入:matrix = [[1,1,0],[1,0,1]]
输出:2
解释:由于你只能整列整列重新排布,所以没有比面积为 2 更大的全 1 子矩形。


示例 4:

输入:matrix = [[0,0],[0,0]]
输出:0
解释:由于矩阵中没有 1 ,没有任何全 1 的子矩阵,所以面积为 0 。
 

提示:

m == matrix.length
n == matrix[i].length
1 <= m * n <= 105
matrix[i][j] 要么是 0 ,要么是 1 。
 

这个题比上一个还简单就是维护一个h[i][j],他说可以交换任意列的次序,那么你在遍历每一列的时候拍个序就行;

class Solution {
public:
    
    int largestSubmatrix(vector<vector<int>>& w) {
        int n=w.size(),m=w[0].size();
        for(int i=1;i<n;i++){
            for(int j=0;j<m;j++){
                if(w[i][j]){
                    w[i][j]+=w[i-1][j];
                }
            }
        }
        int ans=0;
        vector<int>q(m);
        for(int i=0;i<n;i++){
            for(int j=0;j<m;j++){
                q[j]=w[i][j];
            }
            sort(q.begin(),q.end(),greater<int>());
            for(int j=0;j<m;j++){
                ans=max(ans,q[j]*(j+1));
            }
        }
        return ans;
    }
};

单调栈这一算法虽迟但到,完结撒花!!! 

  • 6
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值