numpy.floor详解

本文详细介绍了numpy库中的`numpy.floor`函数,该函数用于将输入数组的每个元素向下取整到最接近的整数。文章提供函数用例、参数说明,并对比了与某些电子表格程序中不同取整行为的差异。通过示例展示了`numpy.floor`在实际数据处理中的应用,如固定宽度分箱操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

numpy.floor

  • 用例:
    numpy.floor(x, /, out=None, *, where=True, casting=‘same_kind’, order=‘K’, dtype=None, subok=True[, signature, extobj]) = <ufunc ‘floor’>
  • 功能:
    按元素顺序将输入数据的向下取整结果进行返回。我们将不大于标量x的最大整数i记作其向下取整结果。通常用符号 ⌊ x ⌋ \lfloor x \rfloor x进行表示。
  • 参数
变量名数据类型功能
x数组类型变量输入数据
outn维数组,None,n维数组组成的元组,是一个可选参数计算结果的存储位置,如果提供此参数,其维度必须与输入数据扩充后的维度保持一致。 如果不提供此参数或者此参数值为None,返回新开辟的数组。若此参数为元组,则其长度必须和输出结果的个数保持一致。
where数组类型变量,是一个可选参数此参数一般使用默认值即可
  • 返回值
变量名数据类型功能
yn维数组或标量对x中每个元素向下取整,若x为标量,则返回值也为标量
  • 备注

一些电子表格程序计算会将向下取整计算为向零取整,例如floor(-2.5) = -2。NumPy使用的floor定义为floor(-2.5) = -3。

  • 示例
import numpy as np
a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
np.floor(a)

array([-2., -2., -1., 0., 1., 1., 2.])

large_counts = [296, 8286, 64011, 80, 3, 725, 867, 2215, 7689, 11495, 91897, 44, 28, 7971, 926, 122, 22222]
print('原始数据为: {}'.format(large_counts))
final = np.floor(np.log10(large_counts))
print('固定宽度分箱后的结果为: {}'.format(final))

原始数据为: [296, 8286, 64011, 80, 3, 725, 867, 2215, 7689, 11495, 91897, 44, 28, 7971, 926, 122, 22222]
固定宽度分箱后的结果为: [2. 3. 4. 1. 0. 2. 2. 3. 3. 4. 4. 1. 1. 3. 2. 2. 4.]

github链接
https://github.com/wzy6642/numpy-translate

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值