关于numpy的矩阵的翻转(对于上述的方法2的说明)
上述方法2正是利用了numpy对数组的翻转。举例说明。
我仿照图片的像素格式,建立一个2行3列的,每个像素有包含RGB3个元素。
分别进行图中所示的4种运算。
执行a[:-1],移除了后面的一行。对于一维数组,后面的一行其实就是最后一个元素,所以这个运算就是移除最后一个元素。
执行a[::-1],上下两行交换了。同样的看成一维数组的话,一行就是一个元素,这个运算其实就是对一个一维数组内的元素前后对调。多维数组可以理解成对对第一个方括号内的每一个元素前后对调。
执行a[:,::-1],每一行中的元素前后交换了。简单理解就是对第二层反括号内的元素前后对调。
执行a[:,:,::-1],这样就好理解了,肯定是对第三层方括号内的元素对调。这也就解释了,对于一个24位深度的图像执行这个操作的话,是对每个像素的RGB进行对调。
对于图像而言,a[::-1],a[:,::-1],a[:,:,::-1]上述的三种方法分别是X轴的镜像,Y轴的镜像,BGR转换为RGB的操作。
示例: