数据库的索引

本文深入解析数据库索引的概念,包括其类型、作用及创建方法,探讨了索引如何提升查询性能,同时也分析了索引的潜在缺点,如空间消耗和维护成本。文章详细解释了聚簇索引、非聚簇索引、B+树、倒排索引等多种索引结构,以及在MySQL中的具体应用。
摘要由CSDN通过智能技术生成

什么是数据库索引?

答:索引是定义在table基础之上,有助于无需检查所有记录而快速定位所需记录的一种辅助存储结构,由一系列存储在磁盘上的索引项组成,每一种索引项由索引字段和行指针构成。

索引的好处?

  1. 通过创建索引,可以在查询的过程中,提高系统的性能;
  2. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性;
  3. 在使用分组和排序子句进行数据检索时,可以减少查询中分组和排序的时间;

索引的坏处?

  1. 创建索引和维护索引要耗费时间,而且时间随着数据量的增加而增大;
  2. 索引需要占用物理空间,如果要建立聚簇索引,所需要的空间会更大;
  3. 在对表中的数据进行增加删除和修改时需要耗费较多的时间,因为索引也要动态地维护;

什么是稠密索引和稀疏索引?

  • 稠密索引:对于主文件中每一个记录都对应一个索引项;
    • 候选键属性的稠密索引:先查索引,然后再依据索引读主文件;
    • 非候选键属性的稠密索引:
      • 主文件按索引字段排序,索引文件中的索引字段值无重复;
      • 主文件索引字段未排序,但索引文件中的索引字段值是有重复的;
      • 主文件索引字段未排序且索引文件中的索引字段值无重复,这时可以引入指针桶来处理;
  • 稀疏索引:对于主文件中部分记录有索引项和它对应(要求主文件必须是按对应索引字段属性排序存储);

什么是主索引和辅助索引?

  • 主索引:对每个存储块有一个索引项,每个存储块的第一个记录叫锚,通常建立在有序文件的基于主码的排序字段上,属于稀疏索引。
  • 辅助索引:是定义在主文件的任一或多个非排序字段上的辅助存储结构,属于稠密索引。

     补充:一个主文件可以有一个主索引,但可以有多个辅助索引。

什么是聚簇索引和非聚簇索引?

  • 聚簇索引:将数据存储与索引放到了一块,找到索引也就找到了数据,主文件按照对应字段排序存储,索引文件无重复排序存储。
  • 非聚簇索引:将数据存储于索引分开结构,索引结构的叶子节点指向了数据的对应行,主文件并没有按照对应字段排序存储,索引文件有重复排序存储。

补充:

  1. 如果主文件的某一排序字段不是主码,则该字段上每个记录取值便不唯一,此时该字段被称为聚簇字段,聚簇索引通常是定义在聚簇字段上。
  2. 聚簇索引通常是对聚簇字段上每一个不同值有一个索引项。
  3. 一个主文件只能有一个聚簇索引文件,但可以有多个非聚簇索引文件。
  4. 主索引通常是聚簇索引,辅助索引通常是非聚簇索引
  5. 主索引/聚簇索引是能够决定记录存储位置的索引,而非聚簇索引则只能用于查询,不能改变物理位置。

为什么主键通常建议使用自增id?

答:聚簇索引的数据的物理存放顺序与索引顺序是一致的,即:只要索引是相邻的,那么对应的数据一定也是相邻地存放在磁盘上的。如果主键不是自增id,那么可以想象,它会干些什么,不断地调整数据的物理地址、分页。

mysql中聚簇索引的设定?

答:聚簇索引默认是主键,如果表中没有定义主键,InnoDB 会选择一个唯一的非空索引代替。如果没有这样的索引,InnoDB 会隐式定义一个主键来作为聚簇索引。

什么是倒排索引和正排索引?

  • 倒排索引:一个词汇包含在哪些文档中,倒排索引主要由两个部分组成:“单词词典”和“倒排文件”,应用于搜索引擎。
  • 正排索引:一个文档包含了哪些词汇。

其他结构的索引?

  • 多级索引:对索引再建立索引,如B书/B+树等;
  • 多属性索引:索引字段由多个属性组合一起形成的索引;
  • 散列索引:使用散列技术组织的索引;
  • 网络索引:使用多索引字段进行交叉联合定位与检索;

B+树

B+树是通过二叉查找树,再由平衡二叉树,B树演化而来。

二叉排序树:左子树的键值总是小于根的键值,右子树的键值总是大于根的键值,因此可以通过中序遍历得到键值的排序输出。

平衡二叉树:首先复合二叉查找树的定义,其次必须满足任何节点的两个子树的高度最大差为1.(平衡二叉树相比于二叉查找树来说,查找效率更稳定,总体的查找速度也更快。)

m阶B-树:树中每个结点至多m棵子树、非叶子结点的根结点至少有两棵子树、除根结点外的非叶子结点至少有m/2棵子树、所有的叶子结点出现在同一层,并且不带信息,通常称为失败结点、树中每个结点的关键字有序,且关键字的左子树中的关键字均小于它,右子树均大于它。(单个节点可以存储多个键值和数据的平衡树)

m阶B+树:与B-树差异在于有n棵子树的结点中含有n个关键字、所有的叶子节点包含了全部关键字的信息,以及指向这些关键字记录的指针、所有的非终端结点可以看成是索引部分,结点中仅含有其子树中最大的关键字。

B+树相比B-树的优先?

  1. B+ 树非叶子节点上是不存储数据的,仅存储键值,而 B 树节点中不仅存储键值,也会存储数据,如果不存储数据,那么就会存储更多的键值,相应的树的阶数(节点的子节点树)就会更大,树就会更矮更胖,如此一来我们查找数据进行磁盘的 IO 次数又会再次减少,数据查询的效率也会更快。
  2. B+ 树索引的所有数据均存储在叶子节点,而且数据是按照顺序排列的,使得范围查找,排序查找,分组查找以及去重查找变得异常简单。

Mysql索引

  • 普通索引

最基本的索引,它没有任何限制。它有以下几种创建方式:

CREATE INDEX indexName ON 表名(列名(length));  //创建索引
ALTER 表名 ADD INDEX [indexName] ON (列名(length))  //修改表结构

CREATE TABLE mytable( ID INT NOT NULL, username VARCHAR(16) NOT NULL,INDEX [indexName] (username(length)) ); //创建表时直接创建索引

DROP INDEX [indexName] ON 表名;  //删除索引
  • 唯一索引

它与前面的普通索引类似,不同的就是:索引列的值必须唯一,但允许有空值。如果是组合索引,则列值的组合必须唯一。它有以下几种创建方式:

CREATE UNIQUE INDEX indexName ON 表名(列名(length)) 

ALTER 表名 ADD UNIQUE [indexName] ON (列名(length)) 

CREATE TABLE mytable(  
 
ID INT NOT NULL,   
 
username VARCHAR(16) NOT NULL,  
 
UNIQUE [indexName] (username(length))  
 
);  
  • 主键索引

它是一种特殊的唯一索引,不允许有空值。一般是在建表的时候同时创建主键索引,即具有primary key约束的字段。

  • 组合索引
ALTER TABLE 表名 ADD INDEX 索引名 (列名1,列名2,列名3);

建立索引的时机是什么?

答:在WHERE和JOIN中出现的列需要建立索引,但也不完全如此,因为MySQL只对<,<=,=,>,>=,BETWEEN,IN,以及某些时候的LIKE才会使用索引(以通配符%和_开头作查询时,MySQL不会使用索引)。

使用索引的注意事项?

  • 索引不会包含有NULL值的列

只要列中包含有NULL值都将不会被包含在索引中,复合索引中只要有一列含有NULL值,那么这一列对于此复合索引就是无效的。所以我们在数据库设计时不要让字段的默认值为NULL。

  • 使用短索引

对串列进行索引,如果可能应该指定一个前缀长度。例如,如果有一个CHAR(255)的列,如果在前10个或20个字符内,多数值是惟一的,那么就不要对整个列进行索引。短索引不仅可以提高查询速度而且可以节省磁盘空间和I/O操作。

  • 索引列排序

MySQL查询只使用一个索引,因此如果where子句中已经使用了索引的话,那么order by中的列是不会使用索引的。因此数据库默认排序可以符合要求的情况下不要使用排序操作;尽量不要包含多个列的排序,如果需要最好给这些列创建复合索引。

  • like语句操作

一般情况下不鼓励使用like操作,如果非使用不可,如何使用也是一个问题。like “%aaa%” 不会使用索引而like “aaa%”可以使用索引。

  • 不要在列上进行运算
  • 不使用NOT IN和<>操作

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值