
数学
文章平均质量分 74
XD742971636
https://www.dong-blog.fun/
展开
-
【数学】一阶线性微分方程的通解的变限积分形式
ye−∫pxdx∫e∫pxdx⋅qxdxCye−∫x0xptdt∫x0xqte∫x0tpsdsdtC我不理解写为变限积分形式的时候,为什么外面如果是dt的微元,里面的变限积分的下界是x0,上届就是t了。解答:在解释一阶线性微分方程的通解为何能写成变限积分形式时,我们需要理解积分上下限的选择和微元的含义。具体解释如下:dxdypxyqxye−∫p。原创 2024-07-31 22:33:12 · 2123 阅读 · 0 评论 -
【数学】什么是小波变换?
小波变换是一种在信号处理中广泛应用的数学工具。与傅里叶变换不同,小波变换可以提供同时在时间和频率上的局部化信息。它通过缩放和平移基本小波函数来分析信号,适用于处理非平稳信号,如音频、图像和生物医学信号等。小波变换的基本公式如下:连续小波变换(CWT):Wψ(a,b)=1∣a∣∫−∞∞x(t)ψ∗(t−ba)dtW_\psi (a, b) = \frac{1}{\sqrt{|a|}} \int_{-\infty}^{\infty} x(t) \psi^*\left(\frac{t - b}{a}\righ原创 2024-06-14 11:56:09 · 1006 阅读 · 0 评论 -
【数学】什么是傅里叶变换?什么是离散傅里叶变换?什么是拉普拉斯变换?
傅里叶变换、离散傅里叶变换和拉普拉斯变换都是在信号处理和系统分析中非常重要的工具。傅里叶变换(Fourier Transform)用于将时间或空间上的信号转换到频率域。通过傅里叶变换,我们可以分析信号的频率成分。离散傅里叶变换(Discrete Fourier Transform, DFT)是傅里叶变换在离散信号上的实现。它用于将有限长的序列转换到频率域。拉普拉斯变换(Laplace Transform)用于分析线性时不变系统。它将一个时间域的函数转换为复频域的函数,可以解决微分方程和控制系统问题。原创 2024-06-14 11:47:18 · 1227 阅读 · 0 评论 -
【数学】什么是傅里叶级数与傅里叶变换?
在实际生活中,傅里叶变换用于信号处理,例如将音频信号转换为频谱,以分析不同频率的声音成分。傅里叶级数则在分析周期信号(如振动和电波)时非常有用。通过将复杂的周期信号分解为简单的正弦和余弦分量,可以更容易地理解和处理这些信号。傅里叶级数和傅里叶变换是数学和工程领域中的重要工具,特别是在信号处理、图像处理和物理学中。傅里叶级数用于将周期函数表示为正弦和余弦函数的和,而傅里叶变换用于将任意函数表示为频率的函数。上的傅里叶级数表示。原创 2024-06-14 11:44:05 · 1686 阅读 · 0 评论 -
【数学】【机器学习】什么是隐马尔可夫模型 (HMM)?
隐含变量(Hidden Variables)在隐马尔可夫模型(HMM)中指的是那些不能直接观察到但对系统行为产生影响的状态。它们是隐藏在观测数据背后的真实状态。原创 2024-06-14 11:34:45 · 946 阅读 · 0 评论 -
【数学】什么是马尔可夫链?RNN 与马尔可夫链的联系,马尔可夫链与条件随机场的比较
马尔可夫链:下一状态仅依赖于当前状态,与之前的状态无关。适合建模具有无记忆性的随机过程。RNN:下一状态依赖于当前输入和之前所有时间步的隐状态。适合建模具有长期依赖关系的序列数据。马尔可夫链:用于建模状态序列的转移概率。隐马尔可夫模型 (HMM):在马尔可夫链基础上增加了观测数据和隐藏状态之间的关系。条件随机场 (CRF):直接建模观测数据条件下的状态序列概率分布,适合序列标注任务。原创 2024-06-14 11:22:30 · 2005 阅读 · 0 评论 -
【数学】什么是方法矩估计?和最大似然估计是什么关系?
方法矩估计(Method of Moments Estimation)和最大似然估计(Maximum Likelihood Estimation, MLE)是两种常用的参数估计方法。方法矩估计基于样本矩与总体矩的关系,通过样本数据计算样本矩来估计总体参数。最大似然估计基于最大化样本数据的联合概率密度函数,通过寻找参数值使得样本数据出现的概率最大来估计参数。通过方法矩估计或最大似然估计,可以得出投资组合的均值收益和方差,从而指导投资决策。一般情况下,最大似然估计更受欢迎,因为它在大样本下具有良好的统计性质。原创 2024-06-14 11:13:09 · 1686 阅读 · 0 评论 -
【数学】什么是最小二乘法?如何求解最小二乘法?
最小二乘法(Least Squares Method)是一种用于找到数据点最佳拟合曲线的数学优化技术。它通过最小化数据点和拟合曲线之间的误差平方和来实现。广泛应用于统计学、数据分析和机器学习中。在经济学中,最小二乘法可以用来预测消费支出与收入之间的关系。例如,根据历史数据,使用最小二乘法可以拟合出消费支出与收入的关系直线,从而预测未来的消费行为。原创 2024-06-14 10:40:06 · 12554 阅读 · 0 评论 -
【数学】什么是最大似然估计?如何求解最大似然估计
其核心思想是:给定一个观测数据集,找到一组参数,使得在这些参数下观测到当前数据的可能性(似然)最大。例如,在医学研究中,科学家常常需要估计某种疾病的发病率。假设有一个新的传染病,研究人员需要估计其传播率(即,传染给某人的概率)。他们收集了若干病例数据,通过最大似然估计,可以得到传播率的最优估计,从而帮助制定防控策略。最大似然估计同样可以应用于金融领域,比如估计股票的收益率和风险;在机器学习中,用于训练模型的参数,如线性回归中的回归系数等。分别求导并令其等于零,可以得到参数的估计值。的概率分布,观测数据为。原创 2024-06-14 10:32:25 · 4887 阅读 · 0 评论 -
【数学】如何求解矩阵的特征值和特征向量
例如,在面部识别系统中,PCA可以用于从高维的图像数据中提取主要特征向量,这些特征向量代表了图像的主要变化方向,从而减少计算复杂度并提高识别效率。特征向量描述了线性变换中不改变方向的向量,而特征值描述了这些向量被拉伸或压缩的程度。通过主成分分析(PCA),我们可以将图像数据投影到少数几个主要方向上,这些方向对应于最大的特征值,从而实现降维和压缩。如果特征值的绝对值大于1,那么系统是不稳定的。在二维或三维空间中,特征向量指向的是矩阵变换的主要方向,而特征值则描述了矩阵在这些方向上拉伸或缩短的程度。原创 2024-06-14 10:27:32 · 11393 阅读 · 0 评论 -
【数学】协方差介绍、相关系数介绍,Python代码
协方差(Covariance)是统计学中用来衡量两个随机变量之间关系的一种度量。它反映了这两个变量的变化趋势是否一致,即当一个变量偏离其均值时,另一个变量是否也倾向于偏离其均值。协方差可以帮助我们了解变量之间的线性关系以及它们的相互变化情况。具体而言,对于两个随机变量 X 和 Y,它们的协方差记作 Cov(X, Y),计算公式如下:然而,协方差的数值大小受到变量单位的影响,不易直接比较不同数据集之间的关系。原创 2023-08-08 11:21:28 · 2200 阅读 · 0 评论 -
【卡尔曼滤波】用Python实现卡尔曼滤波效果,Python
在卡尔曼滤波中,这些参数的调整会影响滤波器的性能。: 初始状态估计误差,表示初始状态估计值的不确定性。通常设置为一个较大的值,以表示初始状态的不确定性。: 过程方差,表示系统模型中状态转移的噪声或不确定性。较大的值表示系统模型中的不确定性较大。在卡尔曼滤波开始时,您的系统的初始状态估计值。以下是一个简单的Python示例,演示了如何使用NumPy库实现一个一维卡尔曼滤波器。: 测量方差,表示传感器测量的噪声或不确定性。较大的值表示测量值的不确定性较大。如果初始状态估计值的不确定性较大,您可以增加。原创 2023-08-03 16:37:39 · 2393 阅读 · 0 评论 -
【Python】二维离散小波变换(2D-DWT)实现
它的数学公式描述了小波基函数与信号之间的变换关系,通过这种变换可以获得信号的不同频率和时间尺度上的特征信息。小波变换(Wavelet Transform)是一种数学信号处理技术,用于将信号或图像分解为不同频率的小波成分,从而可以在不同时间尺度上分析信号的特征。同时,复共轭小波基函数也在许多小波变换的应用中发挥着重要的作用,如信号压缩、图像处理和特征提取等领域。在小波变换的计算过程中,复共轭小波基函数与信号进行内积运算,用于计算小波变换的实部和虚部部分,从而获得更完整的频率信息。中的每个点取共轭而得到的。原创 2023-07-28 10:07:19 · 8754 阅读 · 0 评论 -
【几何数学】【Python】【C++】将线段沿着线段方向延长一定长度,求新的点
p1点和p2点是一条线段的两端,沿着p1指向p2的方向,将线段长度延伸长度x,求延伸后的点ep。原创 2023-06-30 15:48:10 · 1095 阅读 · 0 评论 -
【几何数学】【Python】【C++】判断两条线段是否相交,若相交则求出交点坐标
【代码】【几何数学】【Python】判断两条线段是否相交,若相交则求出交点坐标。原创 2023-06-29 11:16:19 · 1292 阅读 · 0 评论 -
【Python】经过一个点P3的一条直线垂直于已知直线,求交点坐标
一个高中数学题目,已经点P1和点P2构成直线,经过P3点做已知直线的垂线,求垂线与已知直线的交点坐标。原创 2023-06-28 16:38:46 · 459 阅读 · 0 评论 -
【数学】【概率论】如何理解贝叶斯概率
贝叶斯公式是一个非常重要的工具,可以帮助我们在已知某些条件的情况下,重新评估事件的概率。它基于条件概率的概念,通过已知的概率关系,计算未知条件下的概率。通过条件概率以及贝叶斯公式,可以在已知某些条件的情况下,计算出某一事件发生的概率。在天气预报中,我们可能会遇到这样的情况:已知某天早上有云(条件B),那么下雨(事件A)的概率是多少。贝叶斯概率是基于贝叶斯公式,用来计算在已知条件下,某一事件发生的概率。条件概率是指在事件B发生的条件下,事件A发生的概率,记作。这与我们通过直接计算得出的结果是一致的。原创 2022-04-27 23:38:12 · 851 阅读 · 0 评论 -
[复习]概率论的一些知识
文章目录1 概率密度函数2 八个分布3 期望4 方差5 有了大数定律后才有后面的6 样本和统计量6 样本1 概率密度函数2 八个分布3 期望4 方差5 有了大数定律后才有后面的6 样本和统计量6 样本不论总体服从什么分布,样本均值是总体均值的无偏估计量。总体 X ——某全体研究对象的某一指标。样本——只研究“简单随机样本”:Xi 独立同分布于 X。...原创 2020-11-16 22:07:31 · 221 阅读 · 0 评论 -
香农墒 交叉熵
1 香农墒 量化信息https://baike.baidu.com/item/%E9%A6%99%E5%86%9C%E7%86%B5/1649961?fr=aladdin1948 年,香农提出了“信息熵”(shāng) 的概念,解决了对信息的量化度量问题。实质就是:信息不确定性的多少。2 交叉熵https://www.cnblogs.com/wangguchangqing/p/12068084.html...原创 2020-11-16 18:57:04 · 378 阅读 · 0 评论 -
概率论 贝叶斯公式
作者:Ghost链接:https://www.zhihu.com/question/51448623/answer/275721105来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。原创 2020-11-16 18:32:29 · 205 阅读 · 0 评论