
论文
文章平均质量分 59
XD742971636
https://www.dong-blog.fun/
展开
-
论文 Spatial Temporal Graph Convolution Networks for Skeleton Based Action Recognition
https://www.cnblogs.com/shyern/p/11262926.html动作识别。原创 2021-11-22 17:20:59 · 418 阅读 · 0 评论 -
论文 行人属性识别 Pedestrian Attribute Recognition: A Survey
https://arxiv.org/pdf/1901.07474.pdf文章工作:(1)传统行人属性识别算法与基于深度学习的行人属性识别算法之间有什么联系和区别?我们从不同的分类规则中分析了传统的和基于深度学习的算法,如基于部件的、基于组的和端到端学习;(2)行人属性如何帮助其他相关的计算机视觉任务?我们还回顾了一些人属性引导的计算机视觉任务,如人的再识别、目标检测、人的跟踪等,充分展示了其有效性和在其他许多相关任务中的广泛应用;(3)如何更好地利用深度网络进行行人属性识别,属性识别未来的发展方向是原创 2021-11-16 14:36:08 · 3737 阅读 · 0 评论 -
论文 DeepEMD: Differentiable Earth Mover‘s Distance for Few-Shot Learning 小样本训练 图片分类
https://arxiv.org/abs/2003.06777事实证明,深度学习在学习大量标记数据时非常有效。相比之下,很少有快照学习尝试只使用少量标记数据进行学习。在这项工作中,我们从图像区域间最佳匹配的新角度,开发了少镜头图像分类方法。我们使用地球移动器距离(EMD)作为度量来计算密集图像表示之间的结构距离,以确定图像相关性。EMD生成具有最小匹配代价的结构元素之间的最佳匹配流,用于计算分类的图像距离。为了在EMD公式中生成元素的重要权重,我们设计了一种交叉引用机制,该机制可以有效地缓解背景混乱和类原创 2021-10-17 00:16:37 · 643 阅读 · 0 评论 -
论文 简单的多数据集检测 Simple multi-dataset detection
https://arxiv.org/pdf/2102.13086.pdf我们如何建立一个通用和广泛的目标检测系统?我们使用所有标注过的概念的所有标签。这些标签跨越具有潜在不一致分类的不同数据集。在本文中,我们提出了一种在多个大规模数据集上训练统一检测器的简单方法。我们使用特定于数据集的训练协议和丢失,但与特定于数据集的输出共享一个通用的检测体系结构。我们展示了如何将这些特定于数据集的输出自动集成到通用语义分类中。与以前的工作相比,我们的方法不需要手动分类协调。我们的多数据集检测器在每个训练域上的性能与特定原创 2021-10-16 00:49:49 · 1557 阅读 · 0 评论 -
论文 Cascade R-CNN: High Quality Object Detection and Instance Segmentation
https://arxiv.org/abs/1906.09756In object detection, the intersection over union (IoU) threshold isfrequently used to define positives/negatives. The threshold used to train adetector defines its \textit{quality}. While the commonly used threshold of 0.5l原创 2021-10-16 00:31:52 · 183 阅读 · 0 评论