Zero-Shot
x124612
这个作者很懒,什么都没留下…
展开
-
【零样本学习】From Zero-shot to Conventional Supervised Classification:Unseen Visual Data Synthesis
Abstract目标识别通常依赖于从大量真实图像中提取特征。但是,在现实场景中,为不断增长的新的类别收集足够的图像是不可能的。所以,提出新的Zero-shot learning (ZSL)框架,可以在没有真实图像的情况下,生成unseen class的视觉特征。采用所提出的Unseen Visual Data Synthesis (UVDS)算法,在训练阶段可以利用语义向量来生成视觉特征。从而,...原创 2019-10-30 15:26:40 · 679 阅读 · 0 评论 -
【零样本学习】Generalized Zero-Shot Learning via Synthesized Examples
Abstract提出生成模型来解决generalized zero-shot learning问题。在条件变分自编码器的基础上,可以生成seen/unseen class的特征,然后可以用来训练分类器。我们的编码-解码结构的关键点是反馈驱动机制,其中判别器(多元回归器)学习将生成的特征映射到相应的类别属性向量,从而得到更好的生成器。我们的模型能够生成unseen class的特征,并且用来训练分...原创 2019-10-30 15:26:24 · 2586 阅读 · 0 评论 -
【零样本学习】Zero-Shot Learning via Class-Conditioned Deep Generative Models
MotivationsZSL问题为了能够泛化到unseen class,通常做了类别辅助信息可用性的假设(辅助信息可以帮助从seen class迁移知识到unseen class)。辅助信息可以是类别属性、词向量等或者是unseen class和每个seen class的相似度。现有的大多数ZSL方法假设每个类别可以用语义空间中的一个固定点表示,而一个点不足以解释类内方差。而生成模型有很多优势...原创 2019-10-30 15:26:00 · 1135 阅读 · 1 评论 -
【零样本学习】A Generative Model For Zero Shot Learning Using Conditional Variational Autoencoders
MotivationZero shot learning假设虽然没有不能得到unseen class的图像,但是可以获得unseen class的语义信息(属性信息或者文本描述等),所以ZSL的研究有助于理解语言概念如何很好地转化为视觉信息。倘若某个类别能够被语义向量准确地表示,那么ZSL问题就可以看作寻找语义向量和图像视觉特征之间的关系。现有的大多数ZSL方法就是学习图像视觉空间到语义空间的...原创 2019-10-30 15:25:38 · 913 阅读 · 0 评论 -
【零样本学习】Zero-Shot Visual Recognition using Semantics-Preserving Adversarial Embedding Networks
Abstract基于visual-semantic embedding的ZSL方法存在信息损失(semantic loss)的问题,在训练过程中,如果某些语义信息对分类的区分性不大,则会被丢弃,但是这些信息往往对识别unseen class很重要。为了避免semantic loss,我们提出 Semantics-Preserving Adversarial Embedding Network (...原创 2019-10-30 15:24:49 · 943 阅读 · 0 评论 -
【零样本学习】A Generative Adversarial Approach for Zero-Shot Learning from Noisy Texts
Abstract大多数现有的ZSL方法是visual semantic embedding的思路。本文利用GAN从文本描述中想象unseen class,从而识别unseen class。具体来说,我们提出了一个简单而有效的生成模型,该模型将unseen class(例如wikipedia文章)的文本描述(通常有噪声)作为输入,为其生成视觉特性。ZSL问题转化为传统分类问题。此外,为了保持生成特...原创 2019-10-30 15:24:15 · 1570 阅读 · 1 评论 -
【零样本学习】Multi-modal Cycle-consistent Generalized Zero-Shot Learning
Motivations现有的GZSL方法学习视觉空间到语义空间的映射(假设视觉空间和语义空间中的类别分布相似),容易偏向于seen class,导致GZSL的准确率低。近年来,生成式方法通过生成unseen class的特征,再学习分类器,提升了GZSL性能。但是它不能保证生成的视觉特征能够反过来生成它对应的语义特征。这导致生成的视觉特征不能很好地表示它的语义特征。所以,提出使用 cycle-c...原创 2019-10-30 15:23:33 · 1165 阅读 · 0 评论 -
【零样本学习】Rethinking Knowledge Graph Propagation for Zero-Shot Learning
Abstract近年来,GCN在ZSL问题上取得了不错的效果,它关联在图结构上相关概念,使得能够泛化到unseen class。然而,由于多层GCN结构需要将知识传播到图中较远的节点(传递并吸收较远节点的知识),在每一层都要执行Laplacian平滑,会稀释知识导致性能降低。为了利用图结构的优势,同时防止较远节点导致的知识稀释问题,我们提出Dense Graph Propagation (DGP...原创 2019-09-30 16:54:02 · 1774 阅读 · 1 评论 -
【零样本学习】Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs
MotivationZSL问题的关键是从seen class迁移知识到unseen class中。一种方法是利用隐式的知识表示(语义向量)来迁移知识。这种方法从文本数据中学习类别的语义向量表示,然后学习语义空间到视觉空间的映射关系,模型受限于语义模型和映射模型的泛化能力。而且很难从结构化信息中学习语义向量。另一种方法是基于显式的知识库或知识图谱。这种方法显示地将知识表示成类别之间的关系(可以利用...原创 2019-09-30 15:13:29 · 3851 阅读 · 7 评论 -
【零样本学习】Feature Generating Networks for Zero-Shot Learning
Abstract由于seen class和unseen class训练数据的极度不平衡,现有的ZSL方法在GZSL任务上性能很差。我们提出基于GAN框架,利用语义信息来生成CNN特征。我们的方法利用Wasserstein GAN和分类损失,生成判别性强的CNN特征,来训练分类器(softmax classifiers or multimodal embedding method)。Contri...原创 2019-09-23 21:05:15 · 2289 阅读 · 0 评论 -
【零样本学习】Generating Visual Representations for Zero-Shot Classification
Abstract大多数现有方法依赖于学习共同的embedding空间,使得unseen class的视觉特征和语义描述进行比较。但是此方法存在局限:1)不能利用判别分类器;2)Generalized Zero-Shot Learning问题不能有效解决。所以,本文同时解决ZSL和GZSL,1)利用seen class学习条件生成器(conditional generator);2)为unseen...原创 2019-09-23 15:57:32 · 844 阅读 · 0 评论