E题:
题意:给定的 xi yi 。求有多少点 到给人 若干定点 的曼哈顿距离 和 小于等于D.
因为D 最大时 1e6,-1e6<=xi<=1e6。
所以 可能的 点 的 x 的范围是 [-2e6 2e6]
同理 y 的 范围 一样。
将 x y 分开讨论。
我们可以枚举 某个x 的 个数,找到合法的y 的个数。两者相乘。相乘之后的值累加起来。就是结果。
碰到绝对值,利用排序,来消除绝对值。将 xi yi 都分别排序。
求 f (f的数值最大是1e6,直接开数值桶来维护),我们要遍历 -2e6 到 2e6 的所有范围。
不断的动态维护前缀和后缀。
因为要维护 t 的数值。
所以我们干脆 一个区间一个区间的遍历。(xi 将 [-2e6, 2e6 ]划分成的区间 )
例如 【-1e6,a[0]),[a[0],a[1])……因为我们每次搜索的区间是左闭右开的,所以最后一个是2e6+1(多的加1,就是因为右端点是开的)
这样 t 的 数值,很好确定。
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 1e6 + 5;
int cnt1[N], cnt2[N];
void solve()
{
int n;
cin >> n;
int d;
cin >> d;
vector<int> a(n + 2);
vector<int> b(n + 2);
for (int i = 1; i <= n; i++)
{
cin >> a[i] >> b[i];
}
a[0] = -2e6;
a[n + 1] = 2e6 + 1;
b[0] = -2e6;
b[n + 1] = 2e6+1;
auto fun = [&](vector<int> &a, int *cnt) -> void
{
sort(a.begin(), a.end());
int pre = 0;
int sub = 0;
for (int i = 1; i <= n; i++)
{
sub += a[i];
}
for (int x = -2e6; x < a[1]; x++)
{
int dis = sub - n * x;
if (dis <= d)
cnt[dis]++;
}
for (int i = 1; i <= n; i++)
{
pre += a[i];
sub -= a[i];
for (int x = a[i]; x < a[i + 1]; x++)
{
int dis = (2 * i - n) * x - pre + sub;
if (dis <= d)
cnt[dis]++;
}
}
};
fun(a,cnt1);
fun(b,cnt2);
for (int i=1;i<=d;i++)
{
cnt2[i]+=cnt2[i-1];
}
int ans=0;
for (int i=0;i<=d;i++)
{
ans+=cnt1[i]*cnt2[d-i];
}
cout<<ans<<"\n";
}
signed main()
{
std::cin.tie(nullptr)->sync_with_stdio(false);
int t;
t = 1;
while (t--)
{
solve();
}
return 0;
}
F
我们可以猜测,各个函数的嵌套顺序是 可以贪心的。下面是证明。
我们确定了相对的顺序。从 n 个里面选出来k 个,每一个函数有选和不选两种选择。是 01 背包的问题。
dp[0]=1;
#include <bits/stdc++.h>
using namespace std;
#define int long long
void solve()
{
int n,k;cin>>n>>k;
vector<pair<int,int>>a(n);
for (int i=0;i<n;i++)
{
cin>>a[i].first>>a[i].second;
}
auto cmp=[&](pair<int,int>&x,pair<int,int>&y)->bool
{
return (1.0*x.first-1)/(1.0*x.second)<(1.0*y.first-1)/(1.0*y.second);
};
sort(a.begin(),a.end(),cmp);
vector<int>dp(k+1);
int ans=0;
dp[0]=1;
for (int i=0;i<n;i++)
{
for (int j=k;j>=1;j--)
{
dp[j]=max(dp[j],dp[j-1]*a[i].first+a[i].second);
}
}
cout<<dp[k]<<"\n";
}
signed main()
{
std::cin.tie(nullptr)->sync_with_stdio(false);
int t;
t = 1;
// cin>>t;
while (t--)
{
solve();
}
return 0;
}