`算法知识` 笛卡尔坐标系, 边长与边权, 曼哈顿距离, 欧几里得距离,外接矩形

本文介绍了笛卡尔坐标系中两点的边长与边权的概念,强调边权是用户自定义的距离,而边长是固定不变的欧几里得距离。讨论了曼哈顿距离与欧几里得距离的关系,并探讨了凸多边形的外接矩形及其与曼哈顿周长和欧几里得周长的联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ID_COUNT: 4 (跳转链接已经使用了{0, ..., ID_COUNT - 1})


图像引用


图一

在这里插入图片描述


图二

在这里插入图片描述


笛卡尔坐标系的(边长)与(边权)

笛卡尔坐标系中, 任意两点 比如(1,1) (2,2), 他们之间的距离dist(即两点的连线), 一定是固定的 定死了的, 是任何人都不可以修改的;
… 这里说的 (两点间的 距离) , 不是用户所能定义的, 而是 (相对于坐标系)的距离, 即: 线段在坐标系里的长度
因为直角坐标系中, 两点的连线距离为: 欧几里得距离, 因此 d i s t = 2 dist = \sqrt{2} dist=2

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值