一道复杂积分求解(被积函数为三角函数与分式的复合函数)

        积分运算是微积分中是非常常见的一类问题,然而有些积分的运算方法非常巧妙,对于大多数人而言,想出相应的正确求解思路并不是一件容易的事情。下面这个积分就是一个典型的例子:

\int_{0}^{\pi}\frac{sin^2x}{9-cos^2x}dx

       不难分析,9-cos^2 x>0对于任意实数x均成立,因而被积函数没有奇点,此积分必然收敛。被积函数的分子是sin^2x,直接换元确实非常困难;为了求解这道积分,核心知识点主要是两个恒等式,分别为csc^2x=\frac{1}{sin^2x}=-\frac{ dcot(x)}{dx}csc^2x=cot^2x+1,最核心的求解步骤则是对被积函数的分子和分母同时乘以csc^4x.下面则是标准的求解过程:

       对原积分的分子和分母同时乘以csc^4x,可得:

       \int_{0}^{\pi}\frac{csc^2x}{9csc^4x-cot^2xcsc^2x}dx=\int_{0}^{\pi}-\frac{-csc^2x dx}{9(cot^2x+1)^2-cot^2x(cot^2x+1)}

      cot x=u,则du=-csc^2x dx,原积分进一步可以转化为

      \int_{-\infty}^{+\infty}\frac{du}{(u^2+1)(8u^2+9)}=\int_{-\infty}^{+\infty}\frac{(u^2+\frac{9}{8})-(u^2+1)}{(u^2+1)(u^2+\frac{9}{8})}du

                                       =\int_{-\infty}^{+\infty}\frac{1}{u^2+1}-\frac{1}{u^2+\frac{9}{8}}du

                                      =\pi-\int_{-\infty}^{+\infty}\frac{du}{u^2+\frac{9}{8}}

                                     =\pi-\frac{8}{9}\int_{-\infty}^{+\infty}\frac{du}{(\frac{2\sqrt{2}}{3}u)^2+1}

     令v=\frac{2\sqrt{2}}{3}u,则原积分可进一步化简为

     \pi-\frac{2\sqrt{2}}{3}\int_{-\infty}^{+\infty}\frac{dv}{v^2+1}=(1-\frac{2\sqrt{2}}{3})\pi

    为了验证自己算得对不对,可以在网址https://www.wolframalpha.com/上输入命令

int sin^2x/(9-cos^2x), from 0 to pi

    发现最终可以得到和先前运算一致的结果:   

     此结果进一步验证了运算过程的正确性,不得不说,这道积分的求解思路过于精妙,因而平时的积累是学习中非常关键的一环!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值