积分运算是微积分中是非常常见的一类问题,然而有些积分的运算方法非常巧妙,对于大多数人而言,想出相应的正确求解思路并不是一件容易的事情。下面这个积分就是一个典型的例子:
不难分析,对于任意实数
均成立,因而被积函数没有奇点,此积分必然收敛。被积函数的分子是
,直接换元确实非常困难;为了求解这道积分,核心知识点主要是两个恒等式,分别为
和
,最核心的求解步骤则是对被积函数的分子和分母同时乘以
.下面则是标准的求解过程:
对原积分的分子和分母同时乘以,可得:
令,则
,原积分进一步可以转化为
令,则原积分可进一步化简为
为了验证自己算得对不对,可以在网址https://www.wolframalpha.com/上输入命令
int sin^2x/(9-cos^2x), from 0 to pi
发现最终可以得到和先前运算一致的结果:
此结果进一步验证了运算过程的正确性,不得不说,这道积分的求解思路过于精妙,因而平时的积累是学习中非常关键的一环!