机器视觉学习笔记--图像滤波1

本文介绍了图像滤波的基本理论,包括均值滤波、高斯滤波、中值滤波以及最小值和最大值滤波。讨论了各种滤波器在去除噪声、修复图像方面的应用,并通过代码示例展示了滤波效果。
摘要由CSDN通过智能技术生成

基本理论

图像滤波的目的:去除图像噪声,修复图像损坏,改变图像分布。

  • 均值滤波(Mean Filter)

    求取NxN像素范围内的均值作为中心点的像素值,N为核大小
    这里写图片描述
    例:核为3
    例如核为3
    核越大,噪声消除效果越好,但图像也会越模糊(细节损失),因此在使用时要学会折衷。
    也可以给不同像素增加权值方式来消除这种影响
    这里写图片描述
    滤波效果如下:
    这里写图片描述
    实现代码:

clear;close all;
img = imread('apple.jpg');
img = rgb2gray(img);
figure('name','Median filter')
subplot(221);
imshow(img);
title('原图')
%添加高斯噪声
gauss_img  = imnoise(img,'gaussian',
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值