机器视觉学习笔记--图像滤波3

颜色直方图调整(Histogram Modification)

图像增强即增强图象中的有用信息,它可以是一个失真的过程。其目的是要改善图像的视觉效果,针对给定图像的应用场合,有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果,满足某些特殊分析的需要。
直方图调整方法通过改变和调整图像的灰度直方图,改变图像值的分布和结构关系的反差增强方法。常用的直方图变换方法有直方图拉伸、直方图均衡化和直方图匹配等。参考链接

由于初学关系,今天只介绍直方图拉伸。
拉伸效果如下:
这里写图片描述

实例代码如下:

clear;close all;
img = imread('man.png');
img = rgb2gray(img);
figure('name','hIstogram')
subplot(221);
imshow(img);
title('原图')

subplot(222)
imhist(img)
title('颜色直方图')

img = img*2
subplot(223);
imshow(img);
title('拉伸后')

subplot(224)
imhist(img)
title('新的颜色直方图')

可以看到,新的图像对比度有所增加,细节部分区别较原图更为明显。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值