BERT报错记录

 一、加载数据集下载失败

报错:

  1. TimeoutError: [WinError 10060] 由于连接方在一段时间后没有正确答复或连接的主机没有反应,连接尝试失败。
  2. urllib3.exceptions.NewConnectionError: <urllib3.connection.HTTPSConnection object at 0x00000241F9AD4AC0>: Failed to establish a new connection: [WinError 10060] 由于连接方在一段时间后没有正确答复或连接的主机没有反应,连接尝试失

可能的解答,可以一试:

(1)这只是一个简单的代理问题。我只是把httpshttp以及它们的相对代理值添加到windows的系统环境中。python 使用bert-base-nli-mean-tokens伯特模型时出错 _大数据知识库

(2)https://wenku.csdn.net/answer/5oh8ym835p

3.Caused by NewConnectionError(‘<urllib3.connection.HTTPSConnection object at 0x7f52ee323250>: Failed_caused by newconnectionerror('<urllib3.connection.-CSDN博客

4.【HuggingFace简明教程补充篇,加载本地数据文件,trainer的使用.-哔哩哔哩】 https://b23.tv/02ncp1W

给出原因:加载数据集时下载失败,因为huggingface把自己的数据文件放在了谷歌的云盘上——

solve:加载本地的数据集,先下载好谷歌的数据文件,然后保存在本地。

代码实例

#使用SBERT进行句子相似度计算
from sentence_transformers import SentenceTransformer

# 加载预训练模型
model = SentenceTransformer('bert-base-nli-mean-tokens')
#定义我们需要计算句子表示的句子
sentence = 'Peking is a beautiful city'
#使用预训练的SBERT模型的encode函数计算句子表示
sentence_representation = model.encode(sentence)
#看该句子表示的维度
print(sentence_representation.shape)

try1:本地不开梯子跑,连接问题;

          开梯子跑,结果如下:ConnectionResetError: [WinError 10054] 远程主机强迫关闭了一个现有的连接。

代码:

from sentence_transformers import SentenceTransformer, util

# 加载预训练模型
model = SentenceTransformer('distilbert-base-nli-stsb-mean-tokens')

# 输入句子
sentences = ['I love programming.', 'Programming is my passion.']

# 获取句子表示
sentence_embeddings = model.encode(sentences)

# 计算句子相似度
cosine_scores = util.pytorch_cos_sim(sentence_embeddings[0], sentence_embeddings[1])

print("Sentence 1:", sentences[0])
print("Sentence 2:", sentences[1])
print("Similarity score:", cosine_scores.item())

 结果:(开梯子了)

1

 

Q1:如何下载预训练 的模型啊

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值