CornerNet Guassian radius高斯半径的确定-数学公式详解

本文详细探讨了CornerNet中高斯半径的确定方法,通过数学公式解释了如何根据角点位置计算确保预测框与GT框IOU大于0.7的半径。文章分为三种情况讨论:两角点在真值框内、两角点在真值框外以及一角点在真值框内外。并提供了两种不同的计算方式,最后对比了两种方法的异同,指出严格替换后的结果可能一致。
摘要由CSDN通过智能技术生成

目录

废话

正文

第一种计算方式

情况一:两角点均在真值框内

情况二:两角点均在真值框外

情况三:一角点在真值框内,一角点在真值框外

第二种计算方式

两种计算方式的比较

最后

References


废话

由于论文实验的需要,这几天在看CenterNet代码,看到关于高斯半径的选择,百思不得其解,遂参考了一些资料,算是搞明白了,在此详细记录一下,仅作备忘。文中或许包括图片、文字和公式的直接借用是为了图省事,参考资料会在最后给出出处,如有冒犯,麻烦告知本人,我会删掉,谢谢!下面进入正文。

正文

For each corner, there is one ground-truth positive location, and all other locations are negative. During training, instead of equally penalizing negative locations, we reduce the penalty given to negative locations within a radius of the positive location. This is because a pair of false corner detections, if they are close to their respective ground truth locations, can still produce a box that suciently overlaps the ground-truth box (Fig. 5). We determine the radius by the size of an object by ensuring that a pair of points within the radius would generate a bounding box with at least t IoU with the ground-truth annotation (we set t to 0:3 in allexperiments).


关于高斯半径的问题与论文中如上所述的文段及图片对应。

在[1]中,知乎作者认为上述“这段话的意思就是在设置GT box的heat map的时候,我们不能仅仅只在top-left/bottom-right的位置设置标签(置为1),因为你看fig5啊,其中红色的bbox为GT框,但是绿色的框其实也能很好的包围目标。所以如果在检测中得到想绿色的这样的框的话,我们也给它保留下来。甚至说的更普遍一些,只要预测的corners在top-left/bottom-right点的某一个半径r内,并且其与GTbox的IOU大于一个阈值(一般设为0.7),我们将将这些点的标签不直接置为0,那置为多少呢?可以通过一个温和的方式来慢慢过渡,所以采用二维的高斯核未尝不可。”[1]

我认为说的非常明白,“那问题现在就变成了如何确定半径r,使得IOU与GT box大于0.7的预测框不被直接阉割掉。”[1]

现在根据预测的两个角点与Ground Truth角点的位置关系,分三种情况来考虑:

        1)两角点均在真值框内

        2)两角点均在真值框外

        3)一角点在真值框内,一角点在真值框外

PS:为什么分三种情况,因为角点间关系就只有这三种情况。


第一种计算方式

下面分别分析这三种情况:

情况一:两角点均在真值框内

 IOU计算公式:                                IOU= \frac{Pre \bigcap GT}{Pre \bigcup GT}

根据两个预测角点的两个限制条件:1)均在GT框内,2)均在GT框两个角点以r为半径的圆内,以及IOU计算公式可知,最小IOU的在预测框和半径r圆相切时获得。(最小IOU都满足要求了,其余情况就也符合了),因此我们只需要考虑“预测的框和GTbox两个角点以r为半径的圆内切。”[1]的情况。

下面,我们根据上图和IOU计算公式,分析下半径r如何选取。

实际上,随着半径r的变化(半径r的变化是由于预测框角点的变化引起的),上图中\bigcup并集的面积是固定的,等于GT框的面积;而\bigcap交集面积随着半径r的增大而减小,从而导致IOU的减小,也就是说IOU的值随r增大,逐渐从1→0。

此时可以根据论文要求的iou=0.7,反向计算一个“高斯半径r”:

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值