33、埃尔米特空间中的正交性、对偶性与伴随映射

埃尔米特空间中的正交性、对偶性与伴随映射

1. 预备知识:半范数与极化恒等式

在埃尔米特空间中,如果 $\langle E, \phi \rangle$ 只是准希尔伯特空间,$|u|$ 被称为半范数。此时,$|u| = 0$ 并不一定意味着 $u = 0$。不过,根据柯西 - 施瓦茨不等式,如果 $|u| = 0$,那么对于所有的 $v \in E$,都有 $u \cdot v = 0$。

与实向量空间类似,复向量空间上的范数由某个正定埃尔米特积 $\langle -, - \rangle$ 诱导,当且仅当它满足平行四边形法则:
$|u + v|^2 + |u - v|^2 = 2(|u|^2 + |v|^2)$

通过极化恒等式可以恢复埃尔米特积:
$4\langle u, v \rangle = |u + v|^2 - |u - v|^2 + i |u + iv|^2 - i |u - iv|^2$

容易验证 $\langle u, u \rangle = |u|^2$,并且 $\langle v, u \rangle = \overline{\langle u, v \rangle}$,$\langle iu, v \rangle = i\langle u, v \rangle$。

2. 正交性相关概念

在处理埃尔米特空间时,我们用 $u \cdot v$ 或 $\langle u, v \rangle$ 表示埃尔米特内积。正交性、向量的正交族、向量的标准正交族以及向量集的正交补等概念与欧几里得空间中的定义相同。

例如,连续函数 $f: [-\pi, \pi] \to \m

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值