变分原理、正交系统与算子泛函知识解析
1. 极化恒等式证明
极化恒等式包含方程 (7.2.19) 和 (7.2.20)。当 X 为实内积空间时,通过如下步骤证明方程 (7.2.19):
[
\begin{align }
\lVert x + y\rVert^2 - \lVert x - y\rVert^2 &= (x + y, x + y) - (x - y, x - y)\
&= (x, x + y) + (y, x + y) - (x, x - y) + (y, x - y)\
&= (x, x) + (x, y) + (y, x) + (y, y) - (x, x) + (x, y) + (y, x) - (y, y)\
&= 2(x, y) + 2(y, x) = 4(x, y)
\end{align }
]
当 X 为复内积空间时,先得出 (\lVert x + y\rVert^2 - \lVert x - y\rVert^2 = 2(x, y) + 2(y, x)),将 y 换为 iy 并乘以 i 可得:
[
\begin{align }
i(\lVert x + iy\rVert^2 - \lVert x - iy\rVert^2) &= i[2(x, iy) + 2(iy, x)]\
&= 2ii(x, y) + 2ii(y, x) = 2i(-i)(x, y) - 2(y, x)\
&= 2(x, y) - 2(y, x)
\end{align }
变分原理与算子泛函解析
订阅专栏 解锁全文
13

被折叠的 条评论
为什么被折叠?



