26、嵌入式系统多模态定位综述

嵌入式系统多模态定位综述

1. 行人定位

行人定位在众多领域有着广泛应用,涵盖商业场景(如商店根据顾客位置推送精准通知)和紧急救援场景(如精准定位事故或犯罪受害者)。为满足这些应用需求,行人定位必须具备高精度和实时性。下面介绍两种嵌入式多模态定位的应用案例,以实现室内或室外环境下的实时精准行人定位。

1.1 大型建筑内的室内定位

定位系统的应用领域广泛,一些关键和受限场景需要使用嵌入式系统。例如,有研究提出了一种室内定位系统,旨在帮助行人在医院等大型建筑中确定自身位置。该系统基于华硕Z00Ld智能手机,利用惯性传感器(陀螺仪和加速度计)作为航位推算系统,同时结合智能手机内置的光传感器。

此系统的工作流程如下:
1. 数据采集 :对采集到的数据进行重采样和滤波处理,以便后续处理使用。
2. 建模 :包含运动模型和光模型两个部分。
- 运动模型 :主要涉及三个功能组件,即步数检测、航向方向估计和定位。步数检测由加速度计完成,特别是加速度计的z轴,它容易受到行人移动导致的手机振动影响。航向方向估计则通过陀螺仪的z轴数据实现。定位方面,作者采用了PDR系统和路径方法,将之前各组件产生的信息进行局部融合。最终得到的位置信息用于确定行人的位置。
- 光模型 :基于光传感器和步数检测数据的融合,旨在修正行人的位置并校正步长信息。这是第二次局部数据融合。
3. 决策阶段 :代表全局数据融合过程,计算并得出最终准确的位置。

<
Matlab基于粒子群优化算法及鲁棒MPPT控制器提高光伏并网的效率内容概要:本文围绕Matlab在电力系统优化与控制领域的应用展开,重点介绍了基于粒子群优化算法(PSO)和鲁棒MPPT控制器提升光伏并网效率的技术方案。通过Matlab代码实现,结合智能优化算法与先进控制策略,对光伏发电系统的最大功率点跟踪进行优化,有效提高了系统在不同光照条件下的能量转换效率和并网稳定性。同时,文档还涵盖了多种电力系统应用场景,如微电网调度、储能配置、鲁棒控制等,展示了Matlab在科研复现与工程仿真中的强大能力。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事新能源系统开发的工程师;尤其适合关注光伏并网技术、智能优化算法应用与MPPT控制策略研究的专业人士。; 使用场景及目标:①利用粒子群算法优化光伏系统MPPT控制器参数,提升动态响应速度与稳态精度;②研究鲁棒控制策略在光伏并网系统中的抗干扰能力;③复现已发表的高水平论文(如EI、SCI)中的仿真案例,支撑科研项目与学术写作。; 阅读建议:建议结合文中提供的Matlab代码与Simulink模型进行实践操作,重点关注算法实现细节与系统参数设置,同时参考链接中的完整资源下载以获取更多复现实例,加深对优化算法与控制系统设计的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值