题意:
思路:
这道题是区间dp,不是BST!!!
令l[i][j]表示以j为根,j的左子树可到i这样的BST是否存在,r[i][j]表示以i为根,i的右子树可到j这样的BST是否存在,c[i][j]表示区间[i,j]合法,即a[i~j]可以组成BST,即l[i][k]&r[k][j]=1,k为[i,j]的根。
在读入数据之后先计算出(i,j)的gcd即g[i][j],如果gcd>1则g[i][j]=1,否则g[i][j]=0。接下来开始区间dp,最外层循环是长度len=1~n,然后是区间左端L和右端R,最后是用于状态转移的K。
如果区间[L,R]合法且以K为根,则c[L][R]=1。若此时g[K][L-1]=1(即根K和L-1可以相连),则根K可以作为L-1的右孩子(因为L-1<K),即r[L-1][R]=1;同理,若g[K][R+1]=1,则根K可以作为R+1的左孩子,即l[L][R+1]=1。
最后c[1][n]就是能否构成BST的答案。
总结:
一道区间dp题目,对应CSP T4。一上来是真的想不到区间dp,实验时就写了个公式生成Yes/No交上去了,理所当然的0分(每个点都有五组数据,防了一手随机数)。后来才发现这是道区间dp题。dp真难啊。
代码:
#include <iostream>
using namespace std;
//区间dp
//l[i][j]表示以j为根,j的左子树可到i 这样的BST是否存在
//r[i][j]表示以i为根,i的右子树可到j 这样的BST是否存在
//区间[i,j]合法,当且仅当l[i][k]&r[k][j]==1
int t,n;
const int maxn=710;
int a[maxn];
int g[maxn][maxn];
bool l[maxn][maxn],r[maxn][maxn],c[maxn][maxn];
int gcd(int a,int b)
{
return b==0 ? a : gcd(b,a%b);
}
int main()
{
ios::sync_with_stdio(false);
cin>>t;
while(t--)
{
cin>>n;
for(int i=1;i<=n;i++)
cin>>a[i];
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
g[i][j]=gcd(a[i],a[j]);
if(g[i][j]==1)
g[i][j]=0;
else
g[i][j]=1;
c[i][j]=0,l[i][j]=0,r[i][j]=0;
}
}
for(int i=1;i<=n;i++)
l[i][i]=r[i][i]=1;
int R;
for(int len=1;len<=n;len++)
{
for(int L=1,R=L+len-1;R<=n;L++,R++)
{
for(int K=L;K<=R;K++)
{
if(l[L][K]&&r[K][R])
{
c[L][R]=1;
if(g[K][L-1])
r[L-1][R]=1;
if(g[K][R+1])
l[L][R+1]=1;
}
}
}
}
if(c[1][n])
cout<<"Yes"<<endl;
else
cout<<"No"<<endl;
}
}