【Week8作业 A】区间选点II【差分约束】

题意:

给定一个数轴上的n个区间,要求在数轴上选取最少的点使得第i个区间[ai,bi]里至少有ci个点。1<=n<=50000, 0<=ai<=bi<=50000, 1<=ci<=bi-ai+1。


思路:

记sum[i]表示数轴上[0,i]之间选点的个数,则对于第i个区间[ai,bi]需要满足sum[bi]-sum[ai-1]>=ci。同时需要保证sum有意义:0<=sum[i]-sum[i-1]<=1。
对于不等式xi-xj>=ck,从j到i连一条长度为ck的有向边,然后用spfa求最长路即可。最后的最小解就是sum[max{bi}]。


总结:

一道关于差分约束的题,构造不等式,化为有向边,然后最小解就跑最长路。坑点:最长路inf应为最小值,不等式的构造,以及spfa的起始点应该为min{ai}而不是0。


代码:

#include <iostream>
#include <queue>
using namespace std;

int n,a,b,c;
int inf=-100000;
//链式前向星
struct edge
{
	int to,next,w;
};
edge e[510000];
int head[51000],tot;
int sum[51000];
bool vis[51000];
int maxbi=0,minai=51000; 
void add(int x,int y,int w)
{
	e[++tot].to=y,e[tot].next=head[x];
	e[tot].w=w,head[x]=tot;
}
//求最长路
void spfa(int s)
{
	queue<int> q;
	q.push(s);
	sum[s]=0,vis[s]=1;
	while(!q.empty())
	{
		int u=q.front();
		q.pop();
		vis[u]=0;
		for(int i=head[u];i!=0;i=e[i].next)
		{
			int v=e[i].to;
			if(sum[v]<sum[u]+e[i].w)
			{
				sum[v]=sum[u]+e[i].w;
				if(!vis[v])
				{
					q.push(v);
					vis[v]=1;
				}
			}
		}
	}
} 
int main()
{
	cin>>n;
	for(int i=0;i<51000;i++)
		head[i]=0,sum[i]=inf,vis[i]=0;
	tot=0;
	for(int i=0;i<n;i++)
	{
		cin>>a>>b>>c;
		maxbi=max(maxbi,b);
		minai=min(minai,a);
		//满足sum[b]-sum[a-1]>=c 
		//连接a-1~b,权重为c 
		add(a-1,b,c);
	}
	//0<=sum[i]-sum[i-1]<=1
	//(i-1,i,0)和(i,i-1,-1) 
	for(int i=minai;i<=maxbi;i++)
		add(i-1,i,0),add(i,i-1,-1);
	spfa(minai-1);
	cout<<sum[maxbi]<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值