BZOJ 1821 [JSOI2010]Group部落划分 - 最小生成树

一步步的思考->戳这里:
http://blog.csdn.net/vmurder/article/details/42000843?utm_source=tuicool&utm_medium=referral

大概就是建一个最小生成树,小边则一定要放到一个部落里面,未选的边则是不同部落,需要寻找未选的边里的最小值即为答案。由此应该从小到大贪心,如果边的两端不在一个部落则相连,边的两端在一个部落里则无需相连直接跳过,选到n-k+1条边,刚好组成了k个部落,这时的下一条两端不在同一集合的边的值即是答案。。。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<algorithm>

using namespace std;

const int maxn=1005;

struct edge
{
    int x,y;
    double val;
    bool operator < (const edge &a)const
    {
        return val<a.val;
    }
}e[maxn*maxn];

int n,k,cnt,num;
int fa[maxn];
double x[maxn],y[maxn];

double getdist(int i,int j)
{
    return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
}
int find(int x)
{
    fa[x]==x?fa[x]:fa[x]=find(fa[x]);
}
int main()
{
    scanf("%d%d",&n,&k);
    for(int i=1;i<=n;i++)
        scanf("%lf%lf",x+i,y+i);
    for(int i=1;i<=n;i++)
        for(int j=i+1;j<=n;j++)
            e[++cnt]=(edge){i,j,getdist(i,j)};
    sort(e+1,e+cnt+1);
    for(int i=1;i<=n;i++)fa[i]=i;
    for(int i=1;i<=cnt;i++)
    {
        int a=find(e[i].x);
        int b=find(e[i].y);
        if(a!=b)
        {
            num++;
            fa[a]=b;
        }
        if(num==n-k+1)
        {
            printf("%.2lf",e[i].val);
            return 0;
        }
    }
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值