理解贝叶斯定理

条件概率

先要从条件概率讲起,条件概率,一般记作P(A|B),意思是当B事件发生时,A事件发生的概率。其定义为
P ( A ∣ B ) = P ( A ∩ B ) P ( B ) P(A|B)=\frac{P(A\cap B)}{P(B)} P(AB)=P(B)P(AB)
其中 P ( A ∩ B ) P(A \cap B) P(AB) 意思是A和B共同发生的概率,称为联合概率。也可以写作 P(A,B) 或 P(AB)。
注意,定义中A与B之间不一定有因果或者时间序列关系。

条件概率的这个定义如何理解呢?

  1. 样本空间
    回顾一下,样本空间是一个实验或随机试验所有可能结果的集合。例如,抛掷一枚硬币,那么样本空间就是集合{正面,反面}。如果投掷一个骰子,那么样本空间就是 {1,2,3,4,5,6}。样本空间的任何一个子集都被称为一个事件
    所以,当我们通常说某个事件的概率时,其实是默认省略了该事件的样本空间。比如说事件A的概率是P(A),其实是指,在样本空间 Ω 中,事件A的数量占Ω的比率,记作P(A)。比如说骰子掷出3点的概率是1/6,其实是说,在掷骰子所有可能结果的集合中(样本空间)中,出现事件”3点“(子集)的比率是1/6。也就是 size{3} / size{1,2,3,4,5,6} = 1/6。

  2. 条件意味着缩小的样本空间,是二级概率
    通常说概率P(A)是针对样本空间 Ω 来说的,而条件概率中的条件,比如P(A|B),意思是事件B发生的情况下,因此非B的样本空间被这个条件排除掉了,所以这时P(A|B)已经不是针对 样本空间 Ω 了,而是针对缩小的样本空间 B。

条件概率

结合上图来理解。原来样本空间是 Ω,事件B发生,意味着样本空间缩小到B的范围,即上图黄色椭圆范围内。同时事件A也发生,也就是上图中 A∩B 蓝色部分,蓝色部分对黄色椭圆的占比,就是条件概率 P(A|B)。可以写作
P ( A ∣ B ) = s i z e { A ∩ B } s i z e { B } ( 1 ) P(A|B)=\frac{size\{A∩B\}}{size\{B\}} \quad(1) P(AB)=size{B}size{AB}(1)

如果考虑到
P ( A ∩ B ) = s i z e { A ∩ B } s i z e { Ω } P ( B ) = s i z e { B } s i z e { Ω } P(A∩B) = \frac{size\{A∩B\}}{size\{\Omega\}} \\ P(B) = \frac{size\{B\}}{size\{\Omega\}} P(AB)=size{Ω}size{AB}P(B)=size{Ω}size{B}
所以
P ( A ∣ B ) = P ( A ∩ B ) P ( B ) ( 2 ) P(A|B)=\frac{P(A\cap B)}{P(B)} \quad(2) P(AB)=P(B)P(AB)(2)

公式(2)就是通常条件概率的定义。要注意的是,如果用公式(1),就是要穷举事件(集合)"A∩B"和"B"的所有情况。如果用公式(2),要注意P(A∩B)和P(B)都是相对整个样本空间 Ω 来计算其概率P的。

贝叶斯定理

从条件概率出发很容易推导出贝叶斯定理。
P ( A ∣ B ) = P ( A ∩ B ) P ( B ) ( 3 ) P ( B ∣ A ) = P ( A ∩ B ) P ( A ) ( 4 ) P ( A ∣ B ) P ( B ∣ A ) = P ( A ) P ( B ) ( 5 ) P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) ( 6 ) P(A|B)=\frac{P(A\cap B)}{P(B)} \quad(3)\\ P(B|A)=\frac{P(A\cap B)}{P(A)} \quad(4) \\ \frac{P(A|B)}{P(B|A)}=\frac{P(A)}{P(B)} \quad(5) \\ P(A|B) = \frac{P(B|A)P(A)}{P(B)} \quad(6) P(AB)=P(B)P(AB)(3)P(BA)=P(A)P(AB)(4)P(BA)P(AB)=P(B)P(A)(5)P(AB)=P(B)P(BA)P(A)(6)

公式(5)可以理解为 条件概率的比值 = 先验概率的比值 = 椭圆A / 椭圆B。(先验概率指P(A)和P(B),由于不涉及其它条件,即P(A)与B无关,P(B)与A无关,所以称为先验。条件概率在这里又称为后验概率,因为P(A|B)意味着已知B事件发生之后,P(B|A)意味着已知A事件发生之后)。

公式(6)就是通常贝叶斯定理的形式。

例题

来自维基百科 - 贝叶斯定理

  1. 种子检测
    假设100%的不良种子都表现A性状,不良种子占所有种子的比例是十万分之一,所有种子中有1/3表现A性状。问一颗A性状的种子是不良种子的概率是多少?

样本空间:所有种子
事件A:种子表现为A形状
事件Bad:是不良种子

根据已知条件
P(A|Bad) = 1 // 不良种子都表现A性状
P(Bad) = 1/10万 // 不良种子占所有种子的比例是十万分之一
P(A) = 1/3 // 所有种子中有1/3表现A性状

求P(Bad|A) // A性状的种子是不良种子的概率
P(Bad|A) = P(Bad) / P(A) * P(A|Bad) = (1/10万) / (1/3) * 1 = 3/10万

种子检测
所谓P(Bad|A) ,就是在A的范围内,Bad的占比是多少。对照上面示意图来说,就是 蓝色矩形面积 / 红框部分面积。

  1. 吸毒者检测
    假设吸毒者每次检测呈阳性(+)的概率为99%。而不吸毒者每次检测呈阴性(-)的概率为99%。某公司雇员有0.5%的吸毒。问检测阳性(+)时,该雇员吸毒的概率是多少?

样本空间:公司所有雇员
事件+:检测结果阳性
事件D:雇员为吸毒者
事件N:雇员为非吸毒者

根据已知条件
P(+|D) = 0.99 // 吸毒者每次检测呈阳性(+)的概率为99%
不吸毒者每次检测呈阴性(-)的概率为99%,那么检测呈阳性的概率是 1-99%=1%,即
P(+|N) = 0.01
P(D) = 0.005 // 公司雇员有0.5%的吸毒
P(N) = 0.995 // 另外99.5%的雇员不吸毒

求P(D|+) // 检测阳性(+)时,该雇员吸毒的概率是多少
P(D|+) = P(D) / P(+) * P(+|D) (公式7

其中 P(+) 还需要计算,应用全概率公式,再用贝叶斯公式:
P(+) = P(+∩D) + P(+∩N) = P(+|D) * P(D) + P(+|N) * P(N)
= 0.99 * 0.005 + 0.01 * 0.995 = 0.0149

代入公式得
P(D|+) = P(D) / P(+) * P(+|D) = 0.005 / 0.0149 * 0.99 = 0.3322 = 33.22%
即检测呈阳性时,只有33.22%的概率为吸毒者。

吸毒者检测
所谓P(D|+) ,就是在检测阳性(+)的范围内,吸毒者D的占比是多少。对照上面示意图来说,就是 蓝色矩形面积 / 红框部分面积。

贝叶斯定理的其它表示

上面吸毒者检测案例中,其实已经得到了贝叶斯公式的另一种表示形式。将P(+)的公式带入公式(7):
P(D|+) = P(D) / P(+) * P(+|D) = P(D) * P(+|D) / ( P(+|D) * P(D) + P(+|N) * P(N) )
将D、+换成常用的符号A、B,即
P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ∣ A ) P ( A ) + P ( B ∣ A ˉ ) P ( A ˉ ) P(A|B) = \frac{P(B|A) P(A)} { P(B|A) P(A) + P(B|\bar A) P(\bar A) } P(AB)=P(BA)P(A)+P(BAˉ)P(Aˉ)P(BA)P(A)
其中 A ˉ \bar A Aˉ 是A的补集,即"非A"。

在更一般化的情况,假设 { A i } \{A_i\} {Ai}是事件集合里的部分集合,对于任意的 A i A_i Ai,贝叶斯定理可用下式表示:
P ( A i ∣ B ) = P ( B ∣ A i ) P ( A i ) ∑ j P ( B ∣ A j ) P ( A j ) ( 8 ) P(A_i|B) = \frac{P(B|A_i) P(A_i)} { \sum_j P(B|A_j) P(A_j) } \quad (8) P(AiB)=jP(BAj)P(Aj)P(BAi)P(Ai)(8)
上面吸毒者检测可以直接用公式(8)计算。

贝叶斯定理(公式8)图示

参考

维基百科 - 条件概率
维基百科 - 样本空间
维基百科 - 贝叶斯定理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值