跟踪算法

本文介绍了一种在小型运动平台上实现目标识别与跟踪的技术方案,该方案利用摄像头捕获视频,通过角点、边对比等手段筛选背景,实现对目标的连续跟踪。目标在相邻帧间重叠超50%,偶尔被遮挡但移动范围受限,系统通过单核处理器处理,将目标重心坐标推送至服务器,结合OpenCV算法进行识别与跟踪。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用场景:本设备安装在一个小的运动平台上,通过摄像头获取周围视频图像,从中发现目标、跟踪目标

约束条件:设备安装的空间小、电量少、运算资源有限,平台进入角度和高度不固定,目标底图是俯视照片或者3D图

分析步骤:

1、锁定场景:SceneLock

2、检测目标:组合算法(Combined):相关类算法 +质心类算法

技术点:单应性变换矩阵

 

我准备利用6678做一个物体训练、识别和跟踪的程序,首先做一个跟踪程序,即用户在视频的某一帧给定一个目标,程序从图形中找出此坐标代表的物体(利用角点、边,也可以根据随后几帧图形,进行对比,以筛除背景),然后在随后帧中跟踪此目标,其中目标在视频中的特性如下:

1.相邻帧之间的目标重叠大过50%

2.目标偶尔会被短暂部分甚至全部遮挡,遮挡期间目标的在图像中的移动范围不会超过图像长宽的1/2

3.只用6678的一个核,它通过网络拉摄像头的实时流量,跟踪后,把目标重心的坐标通过网络推送给PC服务器

4.PC服务器也通过网络从摄像头拉流量,同时从6678接收数据,把两者合并后,在屏幕上显示

以上设想从分析opencv开始,因为opencv中有大量的跟踪算法的实现,通过比较这些算法,找到适合我们的2种算法。如果测试结果表明,opencv算法的精度、识别率达不到要求,再考虑用AI算法。

 

物体的识别可以是opencv的KNN或Cross-check等传统方法,也可以用AI推导。先做单目标识别,后做单目标+周围目标等环境因素进行参考,以减少误判。

选择算法的原则:

1、输入限制最少

2、算法精度、错误率、适应范围和执行速度最佳

3、可以满足各种约束

 

项目的前期目标是在无人机上使用,给定目标的大致位置(比如经纬度或者相对位置)后,进行目标的自动定位和跟踪,目标可以是固定的,也可以是移动的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值