推荐系统打散算法--轮询(分类桶)

本文介绍了推荐系统中用于避免数据扎堆的打散策略——轮询算法,包括单维度和双维度轮询。单维度轮询按某一特征分类,如品牌,防止相同品牌连续出现,但可能导致类别内扎堆。双维度轮询则在第一维度分类后再进行第二维度的分类,如商品组和品牌,进一步分散推荐结果,但仍可能无法完全消除扎堆现象。该方法适用于数据分布较均匀的场景。
摘要由CSDN通过智能技术生成

打散作为推荐系统比较重要的数据处理逻辑,是推荐系统避免数据扎堆最重要的实现手段,本次介绍推荐算法中最简单的轮询算法。

轮询算法一般分为单维度、双维度轮询,所以本文主要介绍,单维度轮询和双维度轮询两种。

单维度轮询:

单维度轮询主要是把数据按照某一个角度进行分类,比如推荐业务中,相同品牌的商品不能相邻出现,这里可以对数据集作以下处理,具体流程如下

注:不同的形状代表不同的品牌

按照品牌分类前的结果集如下图:
在这里插入图片描述
按照品牌分类后的结构如下图(形状):在这里插入图片描述
针对以上结构,可轮询每个分类,每次取分类中某个位置的一个元素,最终轮询结果如下:

在这里插入图片描述
根据上面结果可见,当某个分类比较多时(如图中的三角形有5个),容易导致尾部扎堆现象出现,这也是分类轮询比较大的缺点。

双维度轮询:

双维度轮询即在单维度轮询的基础上,再次对单维度分类结果进行第二个分类去分类,然后对第二个维度分类结果轮询,再轮询第一个结果分类,比如推荐业务中按照四级商品组(形状),品牌(字体颜色)轮询,大体流程如下

分类:原始结果集 -》 维度一分类 -》 维度二分类

轮询:维度二分类结果轮询 -》 维度一分类结果轮询 -》 最终轮询结果集

原始结果集
在这里插入图片描述
分类结果
在这里插入图片描述
维度二轮询
在这里插入图片描述
维度一轮询(最终结果)
在这里插入图片描述
这种情况会打的更散,但是依旧无法解决维度扎堆的情况,只能相对缩小扎堆的可能性(9、10依旧扎堆,一般来说,标准差越大,越不适合用这种打散方式)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值