LeetCode—买卖股票的最好时机

本文深入解析了股票交易中的经典问题,从一次交易到最多三次交易的不同策略,采用动态规划和贪心算法求解最大收益。通过实例代码演示,详细解释了如何在限制条件下获取最高利润。

1.Best Time to Buy and Sell Stock

Description: Say you have an array for which the ith element is the price of a given stock on day i. If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find
the maximum profit.

题目的意思是:用一个数组表示股票每天的价格,数组的第i个数表示股票在第i天的价格。 如果只允许进行一次交易,也就是说只允许买一支股票并卖掉,求最大的收益。

思路:动态规划法,要想获得最大收益,就得在最低的价格时候买入,在最高的价格时候卖出。

O(n)时间,O(1)空间。

/**
     * 从前向后遍历数组prices,记录当前出现过的最低价格low,作为买
     * 入价格,并计算以当天价格出售的收益,作为可能的最大收益res,
     * 整个遍历过程中,出现过的最大收益(即res最大)就是所求。
    */
    public int maxProfit(int[] prices) {
        if(prices==null||prices.length==0){
            return 0;
        }
        
        int low=prices[0];//记录最小值
        int res=0;//记录最大差
        for(int i=1;i<prices.length;i++){
            if(low>prices[i]){
                low=prices[i];
            }
            else if(prices[i]-low>res){
                res=prices[i]-low;
            }
        }
        return res;
    }


2.Best Time to Buy and Sell StockII

Description: Say you have an array for which the ith element is the price of a given stock on day i. Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times). However, you may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

题目:用一个数组表示股票每天的价格,数组的第i个数表示股票在第i天的价格。交易次数不限,但一次只能交易一支股票,也就是说手上最多只能持有一支股票,求最大收益。

思路:贪心法。从前向后遍历数组prices,只要当天的价格高于前一天的价格,就算入收益。

代码:时间O(n),空间O(1)

public int maxProfit(int[] prices) {
        if(prices==null||prices.length==0){
            return 0;
        }
        int profit=0;
        for(int i=1;i<prices.length;i++){
            int tmp=prices[i]-prices[i-1];
            if(tmp>0){
                profit+=tmp;
            }
        }
        return profit;
    }


3.Best Time to Buy and Sell StockIII

Description: Say you have an array for which the ith element is the price of a given stock on day i. Design an algorithm to find the maximum profit. You may complete at most two transactions. Note: You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

题意:用一个数组表示股票每天的价格,数组的第i个数表示股票在第i天的价格。最多交易两次,手上最多只能持有一支股票,求最大收益。

分析:动态规划法。以第i天为分界线,计算第i天之前进行一次交易的最大收益preProfit[i],和第i天之后进行一次交易的最大收益postProfit[i],最后遍历一遍,max{preProfit[i] + postProfit[i]} (0≤i≤n-1)就是最大收益。第i天之前和第i天之后进行一次的最大收益求法同Best Time to Buy and Sell Stock I。

代码:时间O(n),空间O(n)

public int maxProfit(int[] prices) {
        if(prices==null||prices.length==0){
            return 0;
        }
        int n=prices.length;
        int[] preProfit=new int[n];//记录第i天以前进行一次买卖的最大收益;
        int[] postProfit=new int[n];//记录第i天以后进行一次买卖的最大收益;
        
        int curMin=prices[0]; 
        for(int i=1;i<n;i++){
            curMin=curMin>prices[i]?prices[i]:curMin;
            preProfit[i]=(prices[i]-curMin)>preProfit[i-1]?prices[i]-curMin:preProfit[i-1];
        }
        
        int curMax=prices[n-1];
        for(int i=n-2;i>=0;i--){
            curMax=curMax>prices[i]?curMax:prices[i];
            postProfit[i]=postProfit[i+1]>curMax-prices[i]?postProfit[i+1]:curMax-prices[i];
        }
        
        int maxProfit=0;
        for(int i=1;i<n;i++){
            maxProfit=maxProfit>(postProfit[i]+preProfit[i])?maxProfit:(postProfit[i]+preProfit[i]);
        }
        return maxProfit;
    }



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值